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Abstract 

 
 

Each year multiple satellites are launched to provide end users key pieces of 

information.  This information ranges from remote sensing data for military or civilian 

purposes (weather forecasting, troop movements, agriculture production, etc.) to large 

bandwidth telecommunication sensors.  No matter the type of information needed, 

society is demanding more.  Because of this continual rise in information needs, the 

current model of launching one satellite for one mission is not sustainable.  In order to 

satisfy the information needs of nations across the globe, a means for satellites to 

transition from one collection opportunity to another must be developed.  One means of 

transitioning from collection opportunities involves using the aerodynamic forces 

experienced in the upper atmosphere to maneuver the spacecraft.   

This research involves the use of aerodynamic forces on a spacecraft to conduct 

in-plane and out-of-plane maneuvers.  It is assumed a satellite can use a small thruster to 

maintain an altitude within the upper atmosphere and use aerodynamic forces to conduct 

maneuvers.  Comparisons will be made between satellites with nominal small force 

thrusters and satellites utilizing an aerodynamic design.  Key focus areas will be the 

amount of fuel saved for similar maneuvering profiles and the amount of orbital changes 

possible.  This study will use the Gaussian Variation of Parameter equations to calculate 

the thrust, aerodynamic, and orbital perturbations in a MATLAB code designed for 

modeling the space environment.
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APPLICATIONS OF AERODYNAMIC FORCES FOR SPACECRAFT ORBIT 
MANEUVERABILITY IN OPERATIONALLY 

      RESPONSIVE SPACE AND SPACE RECONSTITUTION NEEDS 
 
 
 

Introduction 
 
 
General Issue 

Space continues to be one of the greatest force multipliers for a nation or 

organization.  Russia’s launch of Sputnik in 1957 opened the world to an era of instant 

communication and remote sensing uses of which mankind has yet to reach the limit.  

Each year more and more satellites are launched to provide information to end-users.  

This information ranges from remote sensing data for military or civilian purposes 

(weather forecasting, troop movements, agriculture production, etc.) to large bandwidth 

telecommunication highways.  No matter the type of information, the world’s nations are 

demanding more.   

 
Problem Statement 

Due to the continual increase in information need combined with the demand for 

more rapid deployment of new information technology, the current model of launching 

one satellite for one mission is not sustainable.  The current model is also leading to the 

congestion of space as more and more satellites are launched into orbit.  In order to 

satisfy the information needs of the United States and other nations, a new standard in 

satellite mission capabilities is required.  This standard must incorporate a means for 
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satellites to transition from collect opportunities by efficiently changing orbits.  This 

action will ultimately cut down the number of satellites required as well as allow for the 

quick turnaround of information.  A secondary benefit of providing a means to change 

orbits is to allow for the economical cleanup of space.  A satellite capable of moving 

from one orbit to another could efficiently collect space debris. The appropriate disposal 

of space debris would lead to the decreased likelihood of debris collisions with operating 

spacecraft. Operationally Responsive Space (ORS) and Space Reconstitution (SR) 

respectively are the two titles given to the missions mentioned above.   

 It is the opinion of the current satellite launch and operation models are 

unsustainable.  By making satellites more maneuverable, the number of satellites needed 

in a constellation and re-tasking can be brought down.  The reduction in number of 

launches and satellites needed for a mission is one of the main objectives of ORS 

missions.  Many avenues of achieving the goals of ORS have been discussed.  Most, 

however, focus on the cheap and easy to manufacture aspect using such ideas as common 

spacecraft buses for various missions and using plug-and-play components to fit the 

desired mission. 

 The second mission, SR, recently received a lot of attention on 10 February 2009 

as the U.S. Iridium 33 communications satellite and defunct Russian military 

communications satellite Cosmos 2251 collided, creating two large debris clouds that 

caused a significant danger to operational satellites in low earth orbit for many years 

(Malik, 2009:1).  As more and more spacecraft are put into orbit there is an increased 

probability of collisions; because more nations and organizations are creating their own 

space programs this rate is increasing exponentially.  In order to provide future access to 



 

 3

space new ways to de-orbit satellites quickly and safely and allow for the removal of 

debris left over from launches and defunct satellites must be established. 

 
Proposed Solution 

One such way of doing both ORS and SR missions is what has been named the 

space plane.  A space plane uses the hypersonic speeds of the free stream air around it to 

produce lift.  The X-37, X-40, and X-38 are all examples of space planes. Ultimately a 

space plane can be any satellite which uses some type of airfoil in the hypersonic flow to 

maneuver in Earth’s atmosphere.  These airfoils can be used for orbit maintenance by 

providing a simple lift vector normal to the orbit’s velocity vector or a change in the 

velocity vector itself, leading to a change in orbit.  The U.S. Department of Defense is 

interested in space plane capabilities and currently has requirements for their own space 

plane described in AFSPC Mission Needs Statement 001-97 “Tactical Military 

Operations in Space.”  For a complete tabular breakdown of the DoD’s space plane 

requirements see Appendix A.  A quick overview of the requirements is detailed below. 

 The general mission capabilities of the space plane taken from AFSPC Mission 

Needs Statement 001-97 are threefold: 

a. The Military Space plane System shall be capable of supporting a wide 

range of military air and space superiority, global attack, precision 

engagement, and information superiority missions requiring flight 

operations in, through, and from space and the trans-atmosphere.  

b. The Military Space plane System shall be capable of ascending to, 

operating in, and descending from designated orbits. The Military Space 
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plane System shall be capable of suborbital flight including exo-

atmospheric flight.  

c. The Military Space plane System shall be capable of carrying a payload 

and deploying or otherwise utilizing the payload to execute the military 

missions in orbit, while ascending to orbit, while descending from orbit, or 

during suborbital flight.  

Using these general mission capabilities the space plane is expected to operate in 

four different design mission references;  

1.  Pop up into the exo-atmosphere from a sub-orbital flight and deliver a payload  

2.  Launch directly into an orbital trajectory with a payload 

3.  Launch into an orbital trajectory and land after one orbit at its takeoff base  

4.  Ferry the flight segment of the space plane from one location to another a  

minimum distance of 2000 nautical miles without landing  

Because of this renewed emphasis in hypersonic air/space craft by the DoD, the 

area of hypersonics has seen an increased interest in the past decade and many advances 

have been made.  Most research has focused on the basics of using space planes to 

change orbit inclination and orbit raising.  This thesis will look further into the orbital 

maintenance regime and determine the practicality of using a space plane design to 

prolong the lifetime of the satellite orbit with and without electrical propulsion assistance.  

 
Investigative Questions 

A basic and quick example of using lift to change a spacecraft’s orbit as well as 

an orbit maintainer can be shown using the basic equation for lift and drag displayed 
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below.  The two main variables a wing designer can change in producing a lift force are 

the lift coefficient and wing surface area.  The density and velocity are variables of the 

space plane’s orbit. 

 
ܮ ൌ

1
2
  ଶ (1)ܸܣ௟ܥߩ

 
ܦ ൌ

1
2
 ଶܸܣௗܥߩ

(2)  

where  ܥ௟ is the lift coefficient 
 ௗ  is the drag coefficientܥ
A is the reference area  
  is the density of the fluid the object is traveling in (commonly air)  
V is the velocity of the object through the fluid   
 
For common airfoils seen on today’s sub-orbital airplanes, the lift coefficient 

typically has values ranging from 0 to 2 and does not produce a significant change to the 

lift force when compared with a change in wing surface area, a value ranging from 5 m2, 

a hang glider, to 845 m2, the Airbus A380.  Based on this, changing the surface area of a 

wing is much more practical and will be used as the independent variable in the example.  

Assuming an airfoil travels through the atmosphere with a constant flight path angle of 10 

degrees, the coefficients of drag and lift can be fixed.  In this example the coefficient of 

drag is set to 2.25, a typical value for satellites and the coefficient of lift is set to 1, a 

number which will be explained later in this thesis (Carter, 2009:1).  An initial altitude of 

100 km, the corresponding air density using the 1976 Standard Atmosphere Model, a 

velocity of 7.5 km/s, and a constant mass of 1000 kg are used to fit with the orbits of 

satellites used in this thesis’ discussion.  Two important notes for the example are the 

assumptions that lift, drag, and weight being the only forces acting on the object and air 

continues to act as a fluid medium.  Using Figure 1 below and summing the forces in the 
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x and y directions, solving for the amount of surface area needed to keep an object with a 

4 m2 cross sectional area from losing height is possible.  This value comes out to be 720 

m2.  This surface area is only 100 m2 less than that of the Airbus A380 and only has a 

mass approximately 0.33% of the unloaded take-off weight of the Airbus A380 (Airbus 

A380).  

 

 
Figure 1: Space Plane Wing Analysis 

 
 

Looking at this simple analysis one wonders why space planes should be 

considered at all.  This thesis will show the problem is not as simple as summing the 

forces.  Although building a wing large enough to sustain a satellite’s orbit forever is not 

feasible; limited maintenance of the semi-major axis can be achieved.  

 A second key point in understanding the problem is showing how much change in 

velocity is needed in order to change a spacecraft’s orbit inclination.  This velocity 

change must come from some source, whether it is a conventional thruster or 
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aerodynamic forces.  Although inclination change is not discussed in this thesis, it is 

helpful in clarifying the high costs in velocity change needed to change a spacecraft’s 

orbit.  An inclination change in a spacecraft’s orbit is commonly referred to as a simple 

plane change.  The change in velocity required to go from one orbit inclination to another 

orbit inclination can be found by subtracting the first orbit’s velocity from the second 

orbit’s velocity as Figure 2 below shows. 

 

 
Figure 2: Simple Plane Change 

 
 

By doing this subtraction the equation for a simple plane change becomes 

 
∆ܸ ൌ 2 ௜ܸ݊݅ݏ ൬

∆݅
2
൰ 

(3)  

where  V is the orbital velocity  
i is the inclination   
 
If an initial velocity of 7.5 km/s is assumed the change in velocity required for a 

given change in inclination can be graphed. 
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Figure 3: Inclination Change Cost 

 
 

As Figure 3 shows the necessary change in velocity quickly adds up and after 60 

degrees the velocity change needed equals the orbital velocity of the spacecraft.  This 

large change in velocity is the main reason a spacecraft’s orbit inclination is not changed 

repeatedly.  To do so would require a significant amount of fuel.  However, if we can use 

the Earth’s atmosphere by itself or along with a constant thrust engine to produce a force 

a satellite can potentially change its orbit inclination while minimizing the altitude loss 

and thus the amount of onboard fuel used.   

 
Methodology Overview 

In order to fully address the problem described above and understand the 

usefulness of aerodynamic forces to help maintain satellite orbits, a foundation of 

understanding in four major areas is needed.  These areas are orbital dynamics, Gaussian 

variation of parameters equations, orbital perturbations, and hypersonic aerodynamics.   

This understanding of useful areas will be accomplished in the methodology chapter of 

this paper.   
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Once these areas are discussed an overview of the steps taken in creating a model 

to study the effects on a satellite using a one Newton thruster without aerodynamic 

assistance and a satellite using the one Newton thruster coupled with aerodynamic forces 

will be discussed.  The most important key points of this section will be how the 

equations derived from the four major areas discussed above are employed together and 

the necessary assumptions made in creating the spacecraft model.   

The thesis then moves into the results and analysis chapter and discusses the 

capabilities of the various spacecraft mentioned above to maintain the perigee of their 

orbits.  The scenario of perigee maintenance was chosen because it allows for immediate 

benefits for ORS and SR missions. Using the design considerations discussed above, an 

emphasis will be placed on the comparison of a spacecraft using only a thruster versus a 

spacecraft that uses aerodynamic forces with and without the thruster.  

The final chapter will be used to discuss the effects a space plane and its 

capabilities will have on the spacecraft community. Recommendations of whether the 

spacecraft will be useful in the fields of operationally responsive space and space 

reconstitution will also be made. This thesis will show small satellites incorporating the 

designs discussed in this paper could significantly decrease the loss in orbit time 

compared with satellites using present day body designs.  



 

 10

Literature Review 

 
Chapter Overview 

The past decade has seen a large increase in hypersonic studies. Even though the 

study of hypersonics has been around since the 1950’s the use of aero-assisted vehicles 

has only recently come into its own as a viable option for on-orbit maneuvering.  Recent 

analysis has shown the concept of using aerodynamic forces to maneuver a vehicle can 

provide substantial savings in fuel when coupled with other thrusting methods (Jolley, 

2001:1).  The studies in hypersonics have also proven the simple calculations used 

earlier, Equation 1 and Equation 2, for finding the necessary lift to maintain an orbit are 

not as simple as shown.  This chapter will discuss the research, which has been conducted 

in the area of hypersonics to provide a better understanding of the complications and 

differences hypersonic velocity creates. 

 
Relevant Research 

At the 100 km height chosen in the analysis above, many assumptions and simple 

equations break down when describing the effects of air on a vehicle.  At altitudes above 

85 km the density of the atmosphere becomes much thinner (rarification) and an alternate 

method using dynamic pressure is needed in order to calculate coefficients of lift and 

drag.  One of the more common approaches is Newtonian theory.  Using this approach 

for an infinitely thin flat plate and noting L/D is equal to the cotangent of the angle of 

attack produces the blue solid line shown in Figure 4.  The red line includes the effects of 

laminar skin friction for a surface with a Reynolds number equal to 3x104 and a Mach 

number of 10.   
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Figure 4: Newtonian Results for a Flat Plate 

 
 

As the reader can see the L/D ratio does not approach infinity and has a maximum 

ratio associated with the laminar skin friction.  Since the infinitely thin flat plate is the 

most efficient lifting surface, one can conclude the desired L/D ratios of hypersonic 

vehicles are low (Anderson, 2006:251).  

One type of hypersonic vehicle capable of delivering the L/D ratios needed by the 

space plane has been labeled the waverider.  As described by Anderson “the waverider is 

a supersonic or hypersonic vehicle that has an attached shock wave all along its leading 

edge (Anderson, 2006:251).  By riding atop the shock wave the vehicle is able to keep the 

high pressure behind the shock wave beneath its “wing” in a more efficient manner.  In 

fact, if the proper design for a space vehicle is chosen, coefficient of lift over coefficient 

of drag (Cl/Cd) values slightly greater than six can be attained (Anderson, 2006:251).  It is 
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because of the increased L/D ratios for a given angle of attack generated by a waverider 

that makes it the most likely design for space planes.  Shown below is an example of a 

waverider design vehicle, the X-51A, as provided by the U.S. Air Force’s information 

sheet (X-51A). 

 

 
Figure 5: X-51A 

 
 

Waveriders are typically referenced in many studies of aero-assisted vehicles.  

Many of these studies have focused on using waveriders not to change orbital parameters 

on its own, but to use an elliptical orbit and couple the waverider’s lift forces with an 

onboard engine thrust as the vehicle dips into the atmosphere at perigee.  Pienkowski and 

Jolley both conducted independent studies using this approach whose papers are 

described below. 

Pienkowski proposed using the advancements in light weight lifting bodies over 

the past fifty years to develop a horizontal landing reusable spacecraft.  This craft would 

be capable of changing its inclination by dropping into the atmosphere and firing a 

restart-able and throttle-able rocket engine.  Utilizing data from the X-37 Pienkowski 
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developed a simulation capable of a wide variety of candidate maneuvers and trajectories 

(Pienkowski, 2002:15).  Using this model Pienkowski was able to vary the angles with 

which air hit the spacecraft and measure the resulting lift and drag forces.  These values 

coupled with the thrust from the engine allowed Pienkowski to predict the resulting 

inclination changes of the spacecraft.  Although much of his research focused on 

developing the control model for the engine; Pienkowski also developed a spacecraft 

model predicting inclination changes of 12 to 16 degrees within 10 orbits for light weight 

lifting bodies (Pienkowski, 2002:1).   

Jolley looked at using a waverider to not only change the vehicle’s inclination but 

also inclination changes to make the vehicle’s orbit unpredictable.  He used many of the 

same methods and equations of motion used by Pienkowski and assumed the vehicle 

would be in an elliptical orbit and use a thruster to maintain the orbit’s perigee.   

 A graphical user interface was used to select different starting conditions (speed, 

angle of attack, orbital parameters) and propagate the orbit through a specified time 

window.  Using this approach he was able to show an aero-assisted waverider 

significantly changed the arrival time over a target (Jolley, 2007:34).  Figure 6 and Figure 

7 on the next page taken from his work show the ground track changes and 

unpredictability an aero-assisted vehicle could provide against a satellite without aero-

assistance. 
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Figure 6:  Fixed Orbit Trajectory 

 
Figure 7:  Aero-Assisted Orbit Trajectory 

 
  

Jolley’s work showed the vehicle could produce these maneuvers at a propulsion 

cost of 1/3 the amount of fuel a non aero-assisted vehicle would use.  In addition he was 

able to show this maneuver could be done in as little as three orbits, greatly enhancing the 

unpredictability of the vehicle.   

Although both of these approaches provided significant savings in velocity 

change for their respective missions, neither seemed to look into the effect of using a 

constant lift force in order to maintain desired orbit parameters.  In order to find relevant 

data for a constant force approach a study in electric thrusters was conducted. 
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Electric Thruster/Constant Thrust Study 

Electric thrusters have the capability of firing for extended periods of time and 

can provide the constant thrust motion this thesis looks to analyze.  The drawbacks of 

these thrusters are their limited force, usually less than one Newton.   

However, the equations developed to analyze their behavior for orbital 

propagation can be easily altered to include the effects of aerodynamic forces.  Electric 

thrusters also provide an example for which this research can compare the added benefits 

from a space plane utilizing the aerodynamic forces. This thesis began by observing the 

work of Captain Timothy Hall. 

Hall used examples of current and capabilities of projected future electric 

thrusters to model the effects of continuous thrusting for three scenarios: perigee height 

maintenance, temporal access improvement, and right ascension access improvement. 

Hall found improvements in two of the three areas, perigee height maintenance and 

temporal access.  The research of this thesis will demonstrate the improved capabilities 

an aero-assisted vehicle can provide for perigee height maintenance by taking Hall’s 

analysis a step further for the perigee maintenance.  In his model, Hall used a burn from 

perigee to apogee to slowly increase the semi-major axis.  Over time it was shown the 

orbit slowly increased in height but also circularized (Hall, 2010:22).  The circular 

pattern would severely hamper the ability of a space plane to take advantage of 

aerodynamic forces since the satellite would be out of the range of atmospheric effects.  

The research of this thesis will show a burn can be conducted in a band across apogee so 

as to increase the semi-major axis without causing the orbit to circularize and allow the 
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satellite to take advantage of the aerodynamic forces.  A MatLab model will also be 

created to allow further manipulation of the thruster profile rather than relying on 

Satellite Tool Kit’s propagator.  A thorough vetting of the MatLab model will be 

conducted to insure it is within a reasonable margin of error when compared with results 

from Satellite Tool Kit. 
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Methodology 

 
Chapter Overview 

A foundation of understanding in orbital dynamics, Gaussian variation of 

parameters equations, orbital perturbations, and hypersonic aerodynamics is needed to 

develop models used here.   This thesis will begin this discussion with an overview of the 

coordinate system used for the analysis.  

 
Coordinate System 

The coordinate system chosen for this thesis is the Gaussian coordinate system.  

The Gaussian coordinate system began as a means to provide an easier method for 

describing the relative motion between two satellites, a target and an interceptor; this is 

why it is often called the satellite coordinate system (Vallado, 2004:162).  While this 

thesis will not study relative motion between satellites, the methods of using non-

conservative forces incorporated with the Gaussian coordinate system will be utilized.  

The reason for this decision is the non-conservative nature of drag and lift. 

 There are two main variations of the Gaussian coordinate system according to 

Vallado.  These systems are the RSW and NTW coordinate systems (Vallado, 2004:162).  

For the RSW coordinate system the R axis always points away from the center of the 

Earth, the S axis is in the direction of the satellite’s velocity vector but not necessarily 

parallel with it, and the W axis is normal to the orbital plane.  The NTW system is similar 

to the RSW system however the satellites velocity vector is now used as the reference 

point.  In other words the T axis is tangential to the orbit and always points to the velocity 

vector, the N axis is normal to the velocity vector and remains in the orbital plane, and 
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the W axis is normal to the orbital plane as it was in the RSW system.  This thesis will 

utilize the RSW frame. Figure 8 below gives a representation of the RSW frame. 

 

 

Figure 8: RSW Coordinate System 
 
 

Gaussian VOP Equations 

The Gaussian variations of parameters (VOP) equations are derived from the 

Lagrange VOP equations but include the effects of disturbing forces.  These equations 

will be used extensively due to the continual change in the orbit from perturbing forces.  

Many of today’s methods use a reference orbit to propagate forward with while the VOP 

continually updates the orbit as time progresses.  This is extremely useful in allowing us 

to model the orbit from a wide variety of disturbing forces to include drag and lift.  The 

derivations of these equations as derived by Bate, Mueller, and White are described 

below. 

 Gauss used the standard orbital elements a, e, ݅, Ω, ω, and M to derive his VOP 

equations.  Bate, Mueller, and White used the RSW coordinate frame and provided a 
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step-by-step derivation of Gauss’s VOP equations which is shown below (Bate, 

1971:397-406).   

In the RSW coordinate system the perturbing force is  

ܨ  ൌ ݉ሺܨ௥ࡾ ൅ ࡲ௦ܨ ൅   ሻ (4)ࢃ௪ܨ

and 

࢘  ൌ   (5) ࡾ࢘

࢜  ൌ ࡾሶݎ ൅ ሶ࣏ݎ   (6) ࡿ

Semi-major Axis 

Using a per unit mass formulation the time rate-of-change of energy for a 

particular orbit can be expressed as 

ࢿ݀ 
ݐ݀

ൌ
ࡲ ∙ ࢂ
݉

ൌ ሶ࣏ ሺ
ݎ݀
࣏݀

௥ܨ ൅  ௦ሻܨݎ
(7)  

and 

ࢿ  ൌ െ
μ
2a

 (8)  

Using these two equations the change in the semi-major axis over time can be expressed 

as 

 ݀ܽ
ݐ݀

ൌ
݀ܽ
ࢿ݀

ࢿ݀
ݐ݀

ൌ
ߤ
ଶߝ2

ࢿ݀
ݐ݀

 
(9)  

Using 

ݎ݀ 
࣏݀

ൌ
݁ݎ sin ሺ࣏ሻ

1 ൅ ݁ cos ሺ࣏ሻ
 

(10)  

 ݄ ൌ ሶ࣏ଶݎ ൌ ݊ܽଶඥ1 െ ݁ଶ (11)  

it can be shown the change in true anomaly over time is 
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ሶ࣏  ൌ
݊ܽ
ଶݎ
ඥ1 െ ݁ଶ (12)  

Equations 6, 7 and 8 can be substituted into equation 9 to provide the final equation for 

the 
ௗ௔

ௗ௧
 equation. 

 ݀ܽ
ݐ݀

ൌ 	
2݁ sin ሺ࣏ሻ

݊√1 െ ݁ଶ
௥ܨ ൅

2ܽ√1 െ ݁ଶ

ݎ݊
 ௦ܨ

(13)  

Eccentricity 

For the following elements the time rate of change of angular momentum is 

needed.  This rate can be expressed as the moment of perturbing forces acting on the 

system resulting in the equation below.  

ࢎ݀ 
ݐ݀

ൌ
1
݉
ሺ࢘ ൈ ሻࡲ ൌ ࢃ௦ܨݎ െ  ࡿ௪ܨݎ

(14)  

The angular momentum for an orbit can also be expressed as the change in length in the 

W direction and the transverse component along the plane of rotation for the following 

equation. 

ࢎ݀ 
ݐ݀

ൌ ሶ݄ࢃ ൅ ݄
ߙ݀
ݐ݀

 ࡿ
(15)  

By comparing components of equations 14 and 15 the time rate of change for the 

magnitude of the angular momentum is  

 ݄݀
ݐ݀

ൌ  ௦ܨݎ
(16)  

Using ݌ ൌ ܽሺ1 െ ݁ଶሻ an expression for eccentricity can be found. 

 
݁ ൌ ሺ1 െ

݌
ܽ
ሻଵ/ଶ ൌ ሺ1 െ

݄ଶ

ܽߤ
ሻଵ/ଶ 

(17)  

The time rate of change of eccentricity is found to be  
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 ݀݁
ݐ݀

ൌ െ
݄

݁ܽߤ2
ሺ2
݄݀
ݐ݀

െ
݄
ܽ
݀ܽ
ݐ݀
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(18)  

and substituting dh/dt and da/dt the expression can be further simplified to  

 ݀݁
ݐ݀

ൌ 	
√1 െ ݁ଶ	sin ሺ࣏ሻ

݊ܽ
௥ܨ ൅

√1 െ ݁ଶ

݊ܽଶ݁
ቈ
ܽଶሺ1 െ ݁ଶሻ

ݎ
െ ቉ݎ  ௦ܨ

(19)  

Inclination 

Using the dot product definition of inclination and differentiating provides the following  

 

െ݊݅ݏሺ݅ሻ
݀݅
ݐ݀

ൌ
݄ ቀ݀ݐ݀ࢎ ∙ ቁࡷ െ ሺࢎ ∙ ሻࡷ ݐ݄݀݀

݄ଶ
 

ൌ
݄ሺܨݎ௦ࢃ െ ሻࡿ௪ܨݎ ∙ ࡷ െ ௦ܨݎሺ݅ሻݏ݋ܿ	݄

݄ଶ
 

(20)  

These equations can be further simplified using  

ࢃ  ∙ ࡷ ൌ   ሺ݅ሻ (21)ݏ݋ܿ

ࡿ  ∙ ࡷ ൌ   ሻ (22)ݑሺݏ݋ሺ݅ሻܿ݊݅ݏ

where u is argument of latitude and is equal to ω + ν.  Substituting these equations into 

equation 20 provides the further simplified equation 

 ݀݅
ݐ݀

ൌ
ሻݑሺݏ݋௪ܿܨݎ

݊ܽଶ√1 െ ݁ଶ
 

(23)  

Right Ascension of the Ascending Node 

Once again we begin with the dot product definition of Ω and differentiate to 

obtain 
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(24)  

 

Using the dot product relations 

ࡵ  ∙ ࡷ ൈࢃ ൌ   ሺ݅ሻ (25)݊݅ݏሺΩሻݏ݋ܿ
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(26)  

 

We can now use the definitions above, 
ௗ௜

ௗ௧
, and 

ௗ௛

ௗ௧
 to further simplify the equation 

 ݀Ω
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(27)  

Argument of Perigee 

Using the dot product definition for the argument of latitude and substituting  

ω + ν in for u we get the following equation. 

 ሺࡷ ൈ ሻࢎ ∙ ࢘
ࡷ| ൈ |ࢎ

ൌ ሺ߱ݏ݋ܿݎ ൅  ሻߥ
(28)  

We can then differentiate and 
ௗఠ

ௗ௧
 over to get 
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where  

ࡷ  ൈࢃ ∙ ࢘ ൌ ݎ   ሻ (30)ݑሺݏ݋ሺ݅ሻܿ݊݅ݏ
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ࡷ  ൈ ࢎ ∙ ࢘ ൌ ݎ ݄   ሻ (32)ݑሺݏ݋ሺ݅ሻܿ݊݅ݏ

The only term that we have not derived an expression for is 
ௗఔ

ௗ௧
.  We will do this by using 

the conic equation 
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and differentiate the terms only affected by perturbations 
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To simplify the algebra Bate, Mueller, and White used the identity and its derivative 

ߤ  ݎ ݁ ሻߥሺ݊݅ݏ ൌ ݄ ࢘ ∙ v (36)  
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If we multiply equation 35 by ߤsin	ሺߥሻ and 37 by cos	ሺߥሻ and add them together the 
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following equation is found 
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We can then substitute into equation 29 to get the following equation for 
ௗఠ

ௗ௧
 separated out 

according to the three components 
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Mean Anomaly 

Beginning with 
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and differentiating M0 
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one can substitute in to get the final equation for 
ௗெబ

ௗ௧
 for elliptical orbits only 
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Perturbations 

Perturbations are the main complexity in accurately propagating an orbit.  There 

are many perturbations to consider when accurately predicting a spacecraft’s orbit; 

however this paper will focus only on drag and lift.  The third most dominant force due to 

the J2 perturbation will be ignored along with all others due to its relative small size 

when compared with the drag, lift, and thruster forces.  A brief description of the 

calculations used to find the J perturbations is given in the next section along with Table 

1 which shows the relative magnitudes of the forces, the reason for ignoring all 

perturbations other than drag and lift. 

 
J Perturbations 

The J perturbations accounts for the Earth being asymmetrical and is modeled 

using the potential function used by Bate, Mueller, and White, 
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where µ = the gravitational parameter  
r = the position vector of the satellite 
Jn = a coefficient determined by experimental observation  
re = the radius of the Earth at the equator 
Pn = the Legendre polynomial 
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L = the geocentric latitude, sinሺܮሻ ൌ ௭

௥
 

 
The acceleration can then be calculated by finding the gradient of the potential 

function which is shown below.   
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  (49) ࡷ

Taking the partial derivative of this function supplies the necessary accelerations 

for calculating the perturbations due to the Earth being asymmetrical.  The equations for 

nodal regression and perigee rotation rates are shown below. 
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Since both equations depend on the sine of inclination, an inclination of 0 degrees 

will be used to determine the maximum possible regression and rotation rate.   

 
Drag 

Drag will be calculated using the simple drag equation, Equation 2.  An area of 

2.67 m2, a coefficient of drag of 1, an air density found in the U.S. Standard Atmospheric 

model for the respective heights, and the corresponding speed based on the eccentricity 

will be used.  The corresponding speed can be found by Equation 52 below.   

 ܸோ ൌ ைܸ௥௕௜௧௔௟ െ ௔ܸ௧௠௢௦௣௛௘௥௘ (52)  

The relative velocity of the spacecraft is found by approximating the speed of the 

atmosphere itself as angular motion of the Earth multiplied by the corresponding radius 

component.  By subtracting this value from the velocity component found using equation 
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52 the relative velocity for use in the atmospheric drag calculation can be found.   

As stated earlier, Table 1 provides the comparison of the J perturbation forces for 

Ω and ω at their maximum against the forces of drag for two different radiuses of perigee.  

Please note the drags are shown for the exact second at perigee while the regression and 

rotation are shown for the accumulation of an entire day.  Drag accumulation for one 

orbit will actually be much larger but the differences are made clear with this simpler 

analysis.  Since the analysis of this thesis will use radius of perigees below 6500 km the 

decision was made to neglect central body and all other perturbations. 

 

Table 1: Drag and Central Body Perturbation Comparisons 
Radius of 

Perigee (km) 
Eccentricity Drag (N)  

*One Second 
J2 Right 

Ascension 
(Degrees) 
*One Day 

J2 Argument 
of Perigee 
(Degrees) 
*One Day 

6500 0.01 1.29081 0.157164 0.314328
 0.1 1.41334 0.114848 0.229695
 0.25 1.61824 0.067657 0.135315
 0.5 1.96125 0.025575 0.05115
 0.75 2.30576 0.006643 0.013286
     

6600 0.01 0.00925 0.148986 0.297973
 0.1 0.01013 0.108872 0.217743
 0.25 0.01160 0.064137 0.128274
 0.5 0.01407 0.024244 0.048489
 0.75 0.01654 0.006298 0.012595

 
 
 
Lift 

Lift was found in the same manner as drag and the equations are identical except 

for replacing the CD with the CL and the assumption of the same reference area.  The 

equation is shown below. 
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௅ܨ ൌ

1
2
ܣ௅ܥߩ ோܸ

ଶ (53)  

 
The Atmosphere 

The Earth’s atmosphere is the main variable in which scientists do not have a firm 

model for drag analysis.  There are just too many factors to accurately predict the exact 

density of the atmosphere.  Because of these complexities there is great uncertainty in 

any atmospheric model.  However, because of this uncertainty many studies have been 

conducted in an attempt to fully understand the atmosphere.  From these studies, an 

abundant amount of data has allowed scientists to create models that model the nominal 

behavior of the atmosphere within a reasonable percentage of error.  One such model is 

the U.S. Standard Atmosphere Model, 1976. 

The U.S. Standard Atmosphere Model, 1976 stated goal is to support the 

emerging missile industry with a description of the atmosphere beyond current operating 

altitudes of conventional aircraft (NASA, 1976: xiii).  It is because of the amount of data 

and mid-latitude focused concentration of the atmosphere this model uses that it was 

chosen for the atmospheric model used by this paper.  Vallado also used this model in 

many of his studies and has produced an algorithm for calculating the density of the 

atmosphere for a given satellite height (Vallado, 525).  MatLab code based on this 

algorithm was also readily available to the public leading to the second factor for the US 

Standard Atmosphere Model 1976 model choice, ease of integration into the overall code.  

A complete copy of the code can be found in Appendix B with the rest of the MatLab 

code used by this research and is titled atmos76.m. 
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Coefficient of Drag and Lift 

The coefficients of drag and lift are numbers based on a particular Reynold’s 

number, viscosity, and angle of attack.  There are many methods for finding these values, 

however the degree of complexity and calculations needed distract from the purpose of 

this thesis.  For this reason a coefficient of drag value of one will be used for all 

simulations.  The defense of this choice is given in the following paragraphs. 

Most satellite models utilize a modified Newtonian flow for a flat plate to 

determine the drag coefficient.  
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where  γ is the ratio of specific heats 
M∞ is the free stream Mach number 
 
Figure 9 shows the value of ܥ௣೘ೌೣ

 for various free stream Mach numbers and 

ratios of specific heat, γ, conditions.   
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Figure 9: Variation of Cpmax with M∞ and γ 

 
 

Since γ will tend towards the lower end of the graph and most satellites fly 

through the atmosphere with a shape roughly that of a flat plate, most satellites use the 

௣೘ೌೣܥ
 approach.  It is also important to note the basic Newtonian flow theory can also be 

used to predict the coefficient of drag for a sphere and cylinder with an infinite span at 1 

and 4/3 respectively.  These shapes are more aerodynamically efficient in high speed 

flows and produce smaller coefficients of drag.  Because of this these coefficient of drag 

values will be more applicable to the design of this thesis’s space plane coefficient of 

drag estimate. 

In addition to the estimation methods described above, Anderson has documented 

the coefficient of drag versus Mach number for STS-5.  This chart is shown below in 

Figure 10 (Anderson, 2006:87). 
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Figure 10: STS-5 CD vs. Mach Number 

 
 

Based on this data it appears the shuttle has a coefficient of drag around 0.8 for 

most of its flight around high mach numbers.  It is safe to assume a waverider could 

provide better drag coefficients or at the very least match those of the shuttle.   

Reviewing all of this data it appears the maximum drag coefficients expected for 

any shape would be around two.  However, these numbers are produced by satellite 

designs, which could only be mimicked by the waverider if it oriented its bottom side 

perpendicular to the velocity vector.  This scenario is unlikely.  The more 

aerodynamically shaped sphere and cylinder produce coefficients near one.  Again, these 

shapes are not likely to be incorporated by the waverider.  The final piece of data 

provides a coefficient of drag of 0.8 for the space shuttle at high mach numbers.  The 

design of the shuttle would be the most likely candidate to resemble the final design of 

waveriders.  Based on this data it is safe to assume the coefficient of drag could at least 
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match that of the shuttles’.   

Because of this similarity and the sphere and cone coefficients being near 1, a 

decision to choose 1 as the model’s coefficient of drag was made.  This number is close 

to that of the shuttle’s, but incorporates an error bias since no on orbit data is available for 

waveriders.  In practice the coefficient of drag should be less than 1 and thus be able to 

outperform the model used in this thesis.  However, the trending will remain the same 

and the reader should be able to estimate what an improved coefficient of drag would 

provide based on the results section. 

Using this base coefficient of drag of 1 and lift to drag ratios of 0.5, 1, and 1.5 

provided the most relevant data and would be in line with expected values as stated 

earlier.  Choosing these values rather than calculating coefficients within the program is 

based on computation time and simplification of the problem.  The amount of 

computation time needed to effectively calculate drag and lift coefficients would have 

greatly increased computation time and complexity of the problem for little to no gain in 

understanding the trends associated with it.   

Once the lift and drag accelerations are added together, the numerical method 

described below can be used to find the new position and velocity vector of the satellite 

for a pre-selected change in time.  This process is then repeated over a specified length in 

time for the orbit. 

 
Numerical Integrator 

The numerical integrator chosen for this paper is ODE45, which is found in 

MatLab.  This integrator is based on an eight step Runge-Kutta method and is highly 
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accurate and adaptable.  ODE45 will be utilized by finding new values for the classical 

orbital elements (COEs) after a specified time step based on initial COEs and the 

Lagrange VOP equations.  The maximum time step chosen for this research is five 

seconds for any ODE45 calculation. 

 
Computer Model 

By using the equations and integrator discussed above, various scripts can be 

created to perform the calculations and propagate the orbit forward.  These scripts were 

then implemented into a master script for the final program.  This master script used 

initial classical orbital elements along with initial thrust profiles and outputted a ground 

track for the satellite, a coverage list of when the satellite has line of sight on a specified 

target, and plots for the classical orbital elements and forces versus time.  For a complete 

list of the scripts and the scripts themselves please see Appendix B.  Figure 11 provides a 

flowchart of how the various files are implemented into the master script. 
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Figure 11: Computer Code Structure 

 
 

The code utilizes a max step size of 30 seconds and is useful for orbits of 

eccentricities greater than 0.001 and inclinations greater than 5 degrees.  This step size is 

not to be confused with the maximum step size chosen for the ODE45 MatLab function.  

In scenarios involving eccentricities less than 0.001 and inclinations less than five 

degrees a different set of equations would be needed.  This need for new equations is due 

to the singularities experienced by the Gaussian VOP equations for eccentricity and 

inclination values close to 0.  However, based on the scenarios chosen for this research 

these equations will suffice. 

GaussianVOPMain

wgs84data

COEDeltas

Atmos76

RVpqw

Rvijk

Axisrot
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Results and Discussion 

 
Chapter Overview 

 This chapter will provide the results of the simulations for various Lift vs. Drag 

coefficients and thrusting/non-thrusting satellite profiles.  The simulations will use the 

methodology described in the previous chapter along with any needed inputs described 

within this chapter as well.  The results will also be discussed within this chapter to 

provide the reader with a better understanding of the analysis. 

 
Verification and Validation 

In order to successfully utilize the code described above a verification and 

validation process was needed.  The first step in this process involved using Satellite Tool 

Kit (STK) to verify the outputs of the code were correct.  Both the code described above 

and STK were given a satellite with the following COEs and epoch time. 

 

Table 2: Initial COEs 
a 6648.137 
e 0.005 
i 40 deg 
Ω 0 deg 
ω 0 deg 
M 0 deg 

Epoch Time 3 June 2011 12:00
 
 

The satellite was then propagated forward in time utilizing a two-body approach 

without perturbations for four orbits and the results were compared together.  Based on 

the results, the first five COEs did not change, as was expected, and the mean anomaly 
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for the code was slightly above 0.002 percent of the mean anomaly for STK for each 

perigee crossing.  This percentage is well within acceptable limits and is most likely 

caused by a slight timing error.  Table 3 provides the side-by-side comparisons for the 

code and STK mean anomaly outputs at each perigee crossing based on the original 

orbital period. 

 

Table 3: Mean Anomaly Perigee Crossing Values 
Perigee 

Crossing 
MatLab Code Mean 

Anomaly 
STK Mean 
Anomaly 

Percent 
Difference 

1st 6.283323 6.283185 0.002196 
2nd 12.56665 12.56637 0.002228 
3rd 18.84997 18.84956 0.002175 
4th 25.13329 25.13274 0.002188 
 
 

The second step in validating the code was to conduct the same study as before 

but also include drag.  The specifications chosen for the space plane design incorporating 

drag are shown in table 4 on the next page.  Semi-major Axis was decreased to 7197 km 

and eccentricity was increased to 0.1 to provide for better comparison with values used 

later in this thesis. 

 

Table 4: Space Plane Design Specifications 
Parameter Value 
Area (m2) 2.67 

Coefficient of Drag 1.0 
Mass (kg) 2000 

Flight Path Angle (degrees) 2 
 
 

The propagators were again run for four orbits and the COEs for both the code 
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and STK at each perigee crossing based on the original orbital period are shown below 

for comparison.   

 

Table 5: STK & MatLab Code Drag Comparisons 
Perigee 

Crossing 
Propagator a (km) e i (rad) Ω (rad) ω (rad) M (rad)

1st 

STK 7193.079 0.099396 0.698132 0 0.000418 6.283185 
MatLab 7192.589 0.099334 0.698132 0 0.000366 6.283185 
Percent 
Difference 0.006825 0.062449 0 0 12.34743 0 

2nd 

STK 7177.4 0.097435 0.698132 0 0.000385 12.56637 
MatLab 7183.092 0.098149 0.698132 0 0.000159 12.56637 
Percent 
Difference 0.07931 0.733134 0 0 58.60008 0 

3rd 

STK 7173.607 0.096961 0.698132 0 0.000402 18.84956 
MatLab 7171.909 0.096748 0.698132 0 0.001016 18.84956 
Percent 
Difference 0.023665 0.219957 0 0 153.0352 0 

4th 

STK 7163.789 0.095729 0.698132 0 0.000454 25.13274 
MatLab 7159.936 0.095242 0.698132 0 0.001914 25.13274 
Percent 
Difference 0.053775 0.508854 0 0 321.853 0 

 
 

For this reason the MatLab and STK simulations were propagated out to the point 

both codes predicted re-entry into Earth's atmosphere.  This correlates to a time on orbit 

of 2 days, 17 hours, and 55 minutes.  The STK had a predicted termination point of 2 

days 23 hours and 10 minutes.  This is approximately 5 and 1/2 hours later than the 

MatLab code predicted.  Table 6 shows the COEs and percent differences for a time of 

23,000 seconds.  This value was chosen for this particular scenario because it is 

approximately one orbit before the time when the satellite is expected to re-enter the 

atmosphere as predicted by the MatLab code.  The COEs were taken one orbit before 
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termination in order to limit the amount of noise the large drag forces would cause at re-

entry. 

 

Table 6: STK & MatLab Code Drag Comparisons 40th Crossing 
Propagator a (km) e i (rad) Ω (rad) ω (rad) M (rad) 

STK 6666.4 0.028784 0.696823 0 6.2787 1.304878
MatLab 6569.593 0.014679 0.698132 0 0.214585 2.562427
Percent 
Difference 1.452173 49.00404 0.187852 0 96.58234 96.37292

 

 
Based on the data the inclination and right ascension did not change as was 

expected since there were no forces perpendicular to the orbital plane.  The mean 

anomaly and argument of perigee both had large percent differences, but these values 

only predict where the satellite is in a particular orbit.  Because this thesis is analyzing 

the time on orbit (affected by semi-major axis and eccentricity) and not the location of 

the orbit the author decided to accept the large percent differences for these COEs.  Based 

on the values for semi-major Axis and eccentricity it appears the STK model is producing 

a slightly smaller specific force due to drag than the MatLab code which is resulting in a 

longer time on orbit.  This can also be shown by Table 5 as the changes in argument of 

perigee are slightly smaller when compared with the MatLab predictions.  The semi-

major axis only had a 1.5 percent difference and is acceptable.  The eccentricity produced 

a percent difference of 50% which would not be acceptable if this thesis was not focused 

on simple trending.  Since the focus of this thesis is trending the effects lift and drag have 

on a satellite and because the codes were producing similar models with the difference 

being position of the satellite and predicted re-entry a determination to proceed with the 
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MatLab model was made. 

 
Scenario Analysis 

In order to begin the analysis, the first step chosen was to create various plots 

based on the satellite’s true anomaly and a set of chosen semi-major axis, eccentricity, 

specific force, and inclination values using the VOP equations.  The specific force and 

inclination were set at 1 Newton and 40 degrees respectively.  The different sets of semi-

major axis and eccentricity are tabulated below.  

 

Table 7: Semi-major Axis and Eccentricity Values 
a e 

6800 0.0001 
“ 0.001 
“ 0.01 
“ 0.1 

7000 0.0001 
“ 0.001 
“ 0.01 
“ 0.1 

10000 0.0001 
“ 0.001 
“ 0.01 
“ 0.1 

20000 0.0001 
“ 0.001 
“ 0.01 
“ 0.1 

 
 

Using these sets, various charts were created with the specific COE’s time 

derivative on the y-axis and true anomaly on the x-axis.  A small subset of these graphs is 

displayed below; for a complete listing of all the graphs please see Appendix C.  Each 

chart shows how a specified COE’s rate of change (y-axis) is affected by the satellite’s 
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true anomaly (x-axis).  The various COE rates of change are shown with the semi-major 

axis set at 6,800; 7,000; 10,000; and 20,000 km for a particular eccentricity or the rates 

are shown with varying eccentricities at a particular semi-major axis.  These variations 

are shown in the right-hand legend. 

 
Figure 12: Rate of Change in Semi-major Axis Due to Changing Eccentricity and 

7000 km Semi-major Axis, S-direction 
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Figure 13: Rage of Change in Semi-major Axis Due to Changing Eccentricity and 

7000 km Semi-major Axis, R-direction 

 
Figure 14: Rate of Change in Semi-major Axis Due to Changing Semi-major Axis 

and 0.01 Eccentricity, R-direction 
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Figure 15: Rate of Change in Eccentricity Due to Changing Eccentricity and 7000 

km Semi-major Axis, S-direction 
 

 
Figure 16: Rate of Change in Eccentricity Due to Changing Semi-major Axis and 

0.01 Eccentricity, R-direction 
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These graphs shown above show the change in either semi-major axis or 

eccentricity at a particular instant for a force in the S or R direction.  It is important to 

note that if a satellite has a larger semi-major axis then a force in either the S or R 

direction will cause a larger instantaneous change for both the semi-major axis and 

eccentricity.   A satellite with a larger eccentricity will only create a more cosine curve 

effect for semi-major axis and have a little effect for eccentricity for burns in both the S 

and R direction.  Right ascension of the ascending node, argument of perigee, inclination, 

and mean anomaly at epoch all have a cyclic value that depends on true anomaly for the 

burns in either the S, R, or W direction. The reader is encouraged to review these graphs 

in Appendix C in order to familiarize themselves with the expected time rate of change 

values for the different COEs.  This will also allow the reader to better understand which 

forces affect which COE.   

A brief summary of the affect each force has on the different COEs is shown in 

Table 8 on the next page.  Utilizing the charts in Appendix C and assuming positive 

forces shows the direction of change (positive, negative) for each variable at true 

anomaly angles of 0, 90, 180, and 270 degrees. 
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Table 8: COE Direction of Change for a Positive Force 
Variable/ Force 

Direction 
True Anomaly 

 0 90 180 270 
Force S     

a + + + + 
e + 0 - 0 
ω 0 + 0 - 

M0 0 - 0 + 
Force R     

a 0 + 0 - 
e 0 + 0 - 
ω - 0 + 0 

M0 0 + 0 - 
Force W     

i + 0 - 0 
Ω 0 + 0 - 
ω 0 - 0 + 

 
 

At first glance it may seem this table provides a simple means of choosing the 

necessary forces to transfer a satellite into another orbit.  For example, providing a force 

in the positive s or r direction would cause an increase in orbit size.  However, due to the 

coupling of the equations a force in the positive s direction would also change the 

satellite’s eccentricity, argument of perigee, and epoch mean anomaly in either a positive 

or negative direction depending on the true anomaly.  While this may not be a problem, 

the initial goal of increasing the semi-major axis has some unintended consequences. 

A perfect example of this is the work done by Hall described earlier.  Hall used a 

sample of Hall thrusters to produce a force oriented in the positive S direction which only 

fired while traveling from perigee to apogee to raise the spacecraft’s orbit in order to 

maintain a near circular orbit (Hall, 2010:22).  This orbit maneuver capability is due to 

the coupling of the equations.  If Figure 12 and Figure 15 above are reviewed, this burn 
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from perigee to apogee in the S direction would cause the semi-major axis to increase and 

the eccentricity time rate of change would increase part way and decrease the rest.  For 

the purpose of this demonstration the changes in the argument of perigee and epoch mean 

anomaly will be neglected.   

At first glance it appears the eccentricity should have a net effect of 0 due to the 

cosine nature of the eccentricity change.  However; since the eccentricity time rate of 

change is dependent on the semi-major axis as well, and the fact there was a net increase 

of semi-major axis over the course of the burn, a negative net change in eccentricity 

results.  This is due to the increase portion of the eccentricity cosine curve having a larger 

semi-major axis value over the course of the burn when compared with the decrease 

portion.  

By burning from perigee to apogee the satellite is able to raise its orbit while 

maintaining a circular orbit.  An important note is the exact opposite would occur if the 

burn was conducted with a significant portion in the 270 degrees to 90 degrees band.  The 

satellite would increase its semi-major axis as well as its eccentricity due to the increased 

burn time near perigee. 

 
Maintaining Radius of Perigee 

Current methods for increasing the semi-major axis and maintain a perigee radius 

use a burn in the S direction only.  These burns are typically done by large boost motors 

and are one time use devices.  The analysis in this section will look at using a constant 

force thruster coupled with aerodynamic forces to maintain a relatively constant perigee 

while traveling through the atmosphere.   
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Using Figure 12 and Figure 13 it can be shown a specific force in the S direction 

more than doubles the gain of semi-major axis for any given eccentricity when compared 

with the R direction.  It can also be shown for low eccentricities the curve reduces to a 

straight line with its magnitude being close to two and zero for the S and R directions 

respectively.  For this reason most burns to increase the semi-major axis are usually in the 

S direction and this thesis will follow suit. 

The analysis will look at holding the altitude of perigee as close to 80 and 100 km 

as possible, both perigee points will be analyzed at multiple eccentricities.  Based on 

these criteria the COEs for each simulation run are listed below. These COEs will be used 

throughout the analysis of semi-major axis. 

 

Table 9: List of COEs for Altitude of Perigee = 100 km 
a (km) e i (deg) Ω (deg) ω (deg) M (deg) 

6510.69 0.005 40 0 0 180 
6527.09 0.0075 40 0 0 180 
6543.57 0.01 40 0 0 180 
6644.24 0.025 40 0 0 180 
6819.09 0.05 40 0 0 180 
7003.39 0.075 40 0 0 180 
7197.93 0.1 40 0 0 180 
7621.34 0.15 40 0 0 180 
8097.67 0.2 40 0 0 180 
8637.52 0.25 40 0 0 180 
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Table 10: List of COEs for Altitude of Perigee = 80 km 
a (km) e i (deg) Ω (deg) ω (deg) M (deg) 

6490.59 0.005 40 0 0 180 
6506.94 0.0075 40 0 0 180 
6523.37 0.01 40 0 0 180 
6623.73 0.025 40 0 0 180 
6798.04 0.05 40 0 0 180 
6981.77 0.075 40 0 0 180 
7175.71 0.1 40 0 0 180 
7597.81 0.15 40 0 0 180 
8072.67 0.2 40 0 0 180 
8610.85 0.25 40 0 0 180 

 
 

Using these COEs and the code produced the following plots for amount of time 

on orbit based on the initial altitude of apogee. 

 
Figure 17: Amount of Time on Orbit for Non-Thrusting Satellite 
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Figure 18: Amount of Time on Orbit for Non-Thrusting Satellite, 80 km Perigee 

 

 
As Figure 17 and Figure 18 show smaller initial altitude of apogees have a lower 

amount of time on orbit due to the increased amount of time spent in the atmosphere and 

decreased time between perigee passes. An important feature of the graphs to consider is 

the two bends in the curves.  If the reader looks at the 80 km perigee orbit in Figure 18 it 

can be seen the time on orbit follows an almost horizontal path until an altitude of apogee 

of ~1127 km.  Once this altitude of apogee is reached the time on orbit quickly increases 

to roughly 150 minutes which corresponds to the second orbit’s perigee crossing.  At this 

point the satellite begins to follow another horizontal path until an altitude of apogee of 

~2359 km is reached and the time on orbit begins to increase again.  These horizontal 

paths are due to the satellite not having enough energy to overcome the first and second 

perigee crossings.  Once the necessary energy is reached by increasing the initial altitude 
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of apogee the satellite is able to make it through the atmosphere before drag causes a 

perigee collapse.  These horizontal legs are not seen for the 100 km perigee orbit due to 

the higher initial perigee altitude resulting in reduced drag and an increased buffer before 

perigee collapse.  

As a whole the larger initial altitude of apogees provide for longer durations in 

orbit, but this is at a cost of longer orbital periods.  These longer orbital periods may or 

may not be suitable for ORS type missions.  In the case of the 100 km perigee altitude an 

initial altitude of apogee of 4419 km the orbital period is more than 50% greater than the 

orbit with an initial altitude of apogee of 165 km.  The next phase of the analysis will 

look at using a one Newton thruster to provide a boost to the orbit to correct for any loss 

in semi-major axis due to drag at low altitude perigees. 

 
One Newton Thruster Booster 

This section focuses on using a one Newton thruster to correct for the loss of 

altitude due to drag.  The thruster would use a small constant thrust to increase the semi-

major axis back to the semi-major axis value before drag caused a loss of semi-major axis 

at the perigee crossing.  The first step is to find the amount of semi-major axis lost due to 

the drag during a perigee crossing.  This is done by subtracting the semi-major axis value 

at a true anomaly of 45 degrees from the semi-major axis at 325 degrees.  These points 

were chosen in order to incorporate as much of the altitude loss due to drag as possible 

while also providing a large enough true anomaly band for the initial burn after the first 

perigee crossing. 

To simplify finding the true anomaly points at which to conduct the burns, a 
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change of variable from time to eccentric anomaly was used.  This eliminated the need to 

find the time at which the desired true anomaly point occurred.  The change of variable 

was accomplished by using Equation 55 below. 
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By using this equation and the time rate of change for semi-major axis Equation 

56 is produced. 
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If we assume a control angle, α, a burn arc can be produced for perigee,  

-α < E < α, and apogee, (π-α) < E< (π+α).  Since apogee burns will be used for this 

analysis Equation 56 can be integrated over π – α to π + α to produce the following 

formula 

 
∆ܽ ൌ න ቆ

2ܽଷܽ௦
ߤ

ඥ1 െ ݁ଶቇ݀ܧ
గାఈ

గିఈ
ൌ ቆ

4ܽଷܽ௦
ߤ

ඥ1 െ ݁ଶቇ(57) ߙ  

Using the change in semi-major axis due to drag at perigee a control angle can be 

found and from that a burn arc.  This method is used throughout the following analysis of 

perigee height maintenance. 

The amount of time on orbit plots are repeated using the one Newton thruster and 

are shown below. 
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Figure 19: Amount of Time on Orbit for One Newton Thruster 

 

 
Figure 20: Amount of Time on Orbit for One Newton Thruster, 80 km Perigee 
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Based on the plots, each value showed an increase in amount of time on orbit.   

For the thrusting orbit with a 100 km perigee altitude the time on orbit reaches a peak of 

16,000 minutes or 11.11 days at larger initial altitudes of apogee due to the code having a 

hard limit at this point.  If the limit were increased, the time on orbit would also go up 

until the drag at perigee causes perigee collapse no matter how fast the satellite is going.  

In all other graphs the larger altitude of apogee data points will be removed if they go 

over 16,000 minutes in order to better show the trending.  The simulations were not 

propagated out further due to the simulations with larger eccentricities taking upwards of 

10 minutes of computing time to complete for the 60 second time step.  This thesis is 

simply looking for the trends and the current time limit of 16000 minutes allows for 

analysis of these trends without unnecessary computation time.   

For the orbits with a perigee of 80 km the satellites followed the same path as the 

non-thrusting orbits until an initial altitude of apogee of ~2359 km.  At this point, the 

orbit had enough speed to overcome the second perigee crossing and had a steady growth 

as the initial altitude of apogee increases.  In order for the reader to better understand 

what is occurring to the orbit as time progresses the altitude of perigee and apogee were 

plotted for the 80 km perigee satellite with its largest initial apogee height of 4385 km in 

Figure 21 and Figure 22 on the next page. 
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Figure 21: Altitude of Perigee vs. Time, 80 km Perigee, 4385 km Apogee 

 

 
Figure 22: Altitude of Apogee vs. Time, 80 km Perigee, 4385 km Apogee 
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As the reader can see the perigee height stays relatively the same with a slightly 

negative slope as time progresses for the non-thrusting satellite.  For the thrusting satellite 

the perigee slightly increases due to the thrust at apogee but as the apogee decreases the 

drag at perigee cancels this increase from the thruster out.  As a result the perigee height 

stays slightly over 80 km until perigee collapse occurs.  For the apogee height both the 

satellites have a negative trend as the drag at each perigee crossing slowly circularizes the 

orbit and brings apogee down.  Each horizontal line is the time between perigee crossings 

and the vertical lines is the drop off in apogee caused by drag at perigee.  The orbits stay 

the same up until the second perigee crossing as the satellites start at apogee and do not 

fire until the next apogee.  This causes the thrusting satellite to have less apogee decrease 

for the second perigee crossing and ultimately allows the thrusting satellite to have two 

additional perigee crossings before perigee collapse when compared with the non-

thrusting satellite. 

For the 100 km perigee orbits the satellites followed the same path as the non-

thrusting satellites until an initial altitude of apogee of 432 km.  After this they had a 

steady growth, which quickly transitioned into an exponential growth for time on orbit.  

Again, for the readers benefit the altitude of perigee and apogee are plotted for the 100 

km perigee orbit.  The initial apogee height of 432 km chosen since this is where the 

transition occurs between the thrusting and non-thrusting satellites.  These plots are 

shown in Figure 23 and Figure 24 on the next page. 
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Figure 23: Altitude of Perigee vs. Time, 100 km Perigee, 432 km Apogee 

 

 
Figure 24: Altitude of Apogee vs. Time, 100 km Perigee, 432 km Apogee 
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These plots generate the same trend as seen before with the 80 km perigee height.  

The thrusting orbit is just beginning to improve the apogee height as perigee collapse 

occurs.  The thrusting only provides a slight increase in perigee altitude when compared 

with the decrease due to drag. 

One important note to take into account is the slight increase in perigee height on 

right before the first perigee crossing.  This is due to the thruster burning for one iteration 

because of the author’s poor choice of using 0 to initialize the beginning semi-major axis 

for the thruster firing loop.  This choice of 0 caused the thruster firing loop to have a 

large control angle.  Once the thruster fired and the beginning semi-major axis was 

changed to a reasonable value of approximately 6500 km, the thruster firing loop behaved 

correctly.  This error was not noticed until corrections were made for the final copy and 

the perigee height graphs were included into the thesis.  Since the reason for the slight 

increase was understood and it did not affect the trending; the decision to use the slightly 

perturbed data was made. 

It is also important to note the disparity in time on orbit attained by the different 

initial perigee altitudes for the simulations.  For an initial altitude of apogee of 1540 km 

the 100 km perigee orbit reached the time limit of 16,000 minutes compared to 3,900 

minutes for the non-thrusting 100 km perigee orbit and 143 minutes for the 80 km 

perigee orbit at the same initial altitude of apogee.   At these points the thrusting 100 km 

orbit burns all 200 kg of the fuel while the thrusting 80 km orbit re-enters the atmosphere 

after only burning 3 kg of fuel.  Since the non-thrusting 100 km orbit was able to achieve 

3,900 minutes with no fuel use and the thrusting 80 km orbit only completed achieved 

143 minutes with fuel it seems much more useful to have a few kilometers of perigee 
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height than a small constant thrust engine.   

This small increase in perigee provided a 27-fold increase for time on orbit for the 

non-thrusting satellites.  Using the same comparison of time on orbit for the non-thrusting 

and thrusting 100 km orbits shows a four-fold increase for time on orbit with the trade 

being the 200 kg of fuel used.  This is still a significant increase in time on orbit.  Having 

observed the usefulness of a constant thrust engine in enabling low altitude orbits, the 

next step is to observe the added benefit of lift a satellite could incorporate utilizing a 

space plane design. 

 
Addition of Lift 

The specifications chosen for the space plane design as used earlier in the 

MatLab/STK comparison are shown in Table 11 below. 

 

Table 11: Space Plane Design Specifications 
Parameter Value 
Area (m2) 2.67 
Coefficient of Drag 1.0 
Wet Mass (kg) 2000  
Flight Path Angle/Angle of 
Attack (degrees) 

2 

 
 

In addition to the specifications above the coefficient of lift was run at 0.5, 1.0, 

and 1.5.  The space plane will also use the same thruster as before and utilize the same 

algorithm for determining the burn duration.   

Figure 25 helps the reader visualize the direction of the forces the space plane will 

experience while traveling through the atmosphere.   
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Figure 25: Direction of Forces 

 
 

In order to simplify the problem, the flight path angle/angle of attack for the space 

plane is set at two degrees and does not change throughout the orbit propagation.  This 

constant flight path angle ensures the L/D ratio will not change and allows for a simpler 

code creation in order to understand the trends.  In reality these values could change 

depending on perturbations and the stability of the space plane design.  An attitude 

control system would be needed in order to ensure these values did not change.   

Based on Figure 25, Figure 12, and Figure 13 above the lift force will provide a 

positive change in semi-major axis due to the tangential force during the entire perigee 

crossing.  For the radial component of the lift force a positive change in semi-major axis 

will be experienced while the satellite is heading away from perigee and a negative 
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change in semi-major axis while the satellite is heading towards perigee.  For drag, the 

radial component will provide the same direction (positive or negative) of changes as the 

lift force during the same true anomaly bands, however the change in semi-major axis 

due to the tangential force will always be negative.  Simulations were run for lift to drag 

ratios of 0.5, 1, and 1.5 using the same COEs used in the previous sections and the space 

plane specifications listed above.  The amount of time on orbit plots are shown below for 

each lift to drag ratio along with the thruster and non-thrusting simulations. 

 

 
Figure 26: Amount of Time on Orbit for One Newton Thrust, Various L/D’s, and 

100 km Perigee 
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Figure 27: Amount of Time on Orbit for One Newton Thrust, Various L/D’s, and 80 

km Perigee 
 

 

Based on the plots a lift force greatly increases the amount of time and number of 

orbits a satellite can achieve with unsurprisingly the larger L/D ratio producing the best 

results.  Both the 80 km and 100 km simulations show a vast improvement in time on 

orbit.  These improvements are shown as multiples of the non-thrusting time on orbit 

values in Table 12 and Table 13 on the next pages.  The N/A’s are put in place because of 

unreliable data due to the hard time stop of 16,000 minutes implemented in the MatLab 

code.  The thrusting orbits have a value of 1.00 for many of the simulations in both tables 

due to the satellite not having enough speed to overcome the perigee collapse.  Since the 

thruster only provides a small increase in speed and the time step used is 60 seconds they 

appear to have the same collapse time.  In reality, the thrusting satellite would stay on 



 

 61

orbit for a fraction of a minute longer.  It should also be noted that the addition of lift also 

causes the horizontal sections where perigee collapse occurs for many of the initial 

altitude of apogee points to occur sooner.  For example the 80 km perigee orbit sees the 

second perigee crossing occur at 760 km for the L/D of 0.5, somewhere between 760 and 

411 km for the L/D of 1.0, and 411 km for the L/D of 1.5.  Another important note is the 

100 km perigee orbit for an initial altitude of 198 km and an L/D ratio of 0.5 showing a 

decrease in time on orbit.  This decrease occurs for the same reason.  If more initial 

altitude of apogee points were used the graph would show the satellite with an L/D ratio 

of 0.5 has its second perigee crossing point at lower initial altitude of apogee values.   

 

Table 12: 100 km Perigee Time on Orbit Improvements 
Initial Altitude 
of Apogee (km) 

Non-Thrusting 
(min) 

 
Thrusting 

 
L/D of 0.5 

 
L/D of 1.0 

 
L/D of 1.5 

165.107 48 1.00 2.15 2.40 2.44 
197.906 130 1.00 0.98 1.09 1.60 
230.871 136 1.00 1.61 2.23 2.80 
432.212 496 1.00 1.70 3.44 6.80 
781.909 1340 1.13 3.31 N/A N/A 
1150.509 2497 1.65 N/A N/A N/A 
1539.586 3900 N/A N/A N/A N/A 
2386.401 7334 N/A N/A N/A N/A 
3339.069 11407 N/A N/A N/A N/A 
4418.758 16000 N/A N/A N/A N/A 
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Table 13: 80 km Perigee Time on Orbit Improvements 
Initial Altitude 
of Apogee (km) 

Non-Thrusting 
(min) 

 
Thrusting 

 
L/D of 0.5 

 
L/D of 1.0 

 
L/D of 1.5 

144.906 35 1.00 1.00 1.03 1.06 
177.604 37 1.00 1.03 1.05 1.00 
210.467 39 1.00 1.03 1.00 1.05 
411.187 44 1.00 1.02 1.07 2.55 
759.804 48 1.00 2.58 4.38 11.90 
1127.265 107 1.01 1.33 6.39 69.71 
1515.142 143 1.00 2.24 33.19 N/A 
2359.342 163 1.01 8.20 N/A N/A 
3309.069 282 1.32 N/A N/A N/A 
4385.425 416 1.46 N/A N/A N/A 

 
 
 
 The same plots for altitude of perigee and apogee were generated with the 

addition of lift included in the particular initial apogee altitudes chosen.  These graphs are 

shown below and on the next few pages. 

 

 
Figure 28: Altitude of Perigee vs. Time, 80 km Perigee, 4385 km Apogee 
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Figure 29: Altitude of Apogee vs. Time, 80 km Perigee, 4385 km Apogee 

 

 
Figure 30: Altitude of Perigee vs. Time, 100 km Perigee, 432 km Apogee 
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Figure 31: Altitude of Apogee vs. Time, 100 km Perigee, 432 km Apogee 

 

 The same increase in perigee height before the first perigee crossing is noticed in 

the lift simulations as well due to the thruster using the same thruster firing loop.  As lift 

is included into the simulations, an increase in perigee height is noticed.  This increase in 

perigee height is caused by the decrease of eccentricity rather than an increase in semi-

major axis.  In fact if the reader finds semi-major axis using the perigee and apogee 

height he/she will notice an overall decrease in semi-major axis.  As the perigee height 

increases the loss in apogee height gets smaller and smaller as now that the perigee height 

is higher the affect of drag is reduced due to the lower air density. The simulation with 

an initial perigee height of 100 km and a lift coefficient of 0.5 shows the orbit on the 

verge of perigee collapse.  Notice the sharp decrease in perigee height once the apogee 

height has dropped below 150 km.  The thruster firings are only slightly noticeable in the 
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perigee height graphs as the slight humps in the middle of horizontal legs of the graphs. 

 
Addition of Lift with No Thruster Support 

 After observing the large increase in time on orbit due to the incorporation of lift 

with a satellite using a one Newton thruster, further simulations were conducted with no 

thruster support for the 100 km perigee orbit utilizing the same L/D and space plane 

profiles.  The same plot profiles were used and are shown below.  Each plot shows the 

non-thrusting orbit, the thrusting orbit, and the specified L/D ratio orbits with and without 

a thruster.  

 

 
Figure 32: Amount of Time on Orbit for Non-Thrusting Satellite and L/D of 0.5 

 



 

 66

 
Figure 33: Amount of Time on Orbit for Non-Thrusting Satellite and L/D of 1.0 

 

 
Figure 34: Amount of Time on Orbit for Non-Thrusting Satellite and L/D of 1.5 
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As the charts show the simulations without the thruster still provide significant 

increases for time on orbit.  The table showing the percentage comparisons for the 100 

km perigee orbit is again shown below with the addition of the simulations without the 

thruster percentages shown in parenthesis. 

 

Table 14: 100 km Perigee Time on Orbit Improvements 
Initial Altitude 
of Apogee (km) 

Non-Thrusting 
(min) Thrusting L/D of 0.5 L/D of 1.0 L/D of 1.5 

165.107 48 1.00 2.15 (2.08) 2.40 (2.38) 2.44 (2.44)
197.906 130 1.00 0.98 (0.98) 1.09 (1.07) 1.60 (1.60)
230.871 136 1.00 1.61 (1.60) 2.23 (1.73) 2.80 (2.82)
432.212 496 1.00 1.70 (1.69) 3.44 (3.15) 6.80 (6.12)
781.909 1340 1.13 3.31 (2.25) N/A N/A 
1150.509 2497 1.65 N/A N/A N/A 
1539.586 3900 N/A N/A N/A N/A 
2386.401 7334 N/A N/A N/A N/A 
3339.069 11,407 N/A N/A N/A N/A 
4418.758 16,000 N/A N/A N/A N/A 

 
 

The same improvement in time on orbit trends can be seen for the simulations 

without the thruster support.  The multiples are simply smaller due to the loss of the 

additional energy the thruster could provide.  For smaller initial altitude of apogees the 

thruster does not provide a large increase when compared with the non-thruster 

simulations.  However, the larger initial altitudes of apogee do show significant 

improvement from the thruster.  The L/D ratio of 1.5 at an initial altitude of apogee of 

231 km shows the non-thrusting satellite as having a longer time on orbit; this is due to 

the second perigee crossing occurring sooner for the thrusting simulation vs. the non-

thrusting simulation. 
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Equivalent Fuel Usage 

 The next step in analyzing the lift forces was to determine how much fuel 

would be saved had the thruster been used to compensate rather than using lift.  By using 

the average force at each time step a total impulse could be found by multiplying by the 

time step, 60 seconds.  This total impulse could then be divided by the specific impulse 

(200) and acceleration due to gravity to find the equivalent mass of propellant.  It is 

important to keep in mind the average force at a particular time step is a combination of 

the R, S, and W component forces.  The propellant masses over the course of the entire 

orbit could then be summed up to find the total equivalent propellant that would need to 

be expelled by the thruster to match the force generated by lift.  The total equivalent 

propellant mass and the total mass actually used by the thruster for each simulation are 

tabulated in Table 15 and Table 16 below and on the next page.  As the tables show the 

addition of force provides a substantial savings in fuel and at lower initial altitudes the lift 

is doing most of the work in keeping the satellite on orbit. 

 

 Table 15: 80 km Perigee Equivalent Fuel Usage 
Initial 

Altitude of 
Apogee (km) 

L/D of 0.5 L/D of 1.0 L/D of 1.5 
Thruster 
Propellant 

Equivalent 
Propellant  

Thruster 
Propellant

Equivalent 
Propellant 

Thruster 
Propellant 

Equivalent 
Propellant 

144.906 0.000 15.707 0.000 34.998 0.000 52.428
177.604 1.162 25.179 1.193 51.166 1.022 38.770
210.467 1.223 35.477 1.010 41.214 1.007 73.796
411.187 1.012 62.583 1.012 90.444 2.333 167.348
759.804 2.610 120.811 5.258 201.289 15.767 286.763
1127.265 2.852 157.141 18.876 289.883 199.453 421.473
1515.142 8.545 196.154 143.416 381.171 197.712 440.828
2359.342 39.618 286.955 199.552 390.768 197.241 461.520
3309.069 199.218 275.918 197.320 385.332 197.347 467.996
4385.425 199.824 253.522 198.370 372.704 197.663 458.831
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Table 16: 100 km Perigee Equivalent Fuel Usage 
Initial 

Altitude of 
Apogee (km) 

L/D of 0.5 L/D of 1.0 L/D of 1.5 
Thruster 

Propellant 
Equivalent 
Propellant 

Thruster 
Propellant

Equivalent 
Propellant

Thruster 
Propellant 

Equivalent 
Propellant 

165.107 2.214 19.734 2.317 26.695 2.335 32.235
197.906 2.564 14.979 2.536 27.870 5.122 42.623
230.871 5.430 31.708 8.168 61.176 10.612 61.376
432.212 24.350 48.604 51.130 97.346 102.042 138.661
781.909 134.185 94.321 198.507 170.264 199.886 185.428
1150.509 199.221 98.814 198.314 146.846 199.402 181.730
1539.586 199.404 85.605 197.873 138.581 198.793 176.814
2386.401 198.606 71.603 199.562 123.380 197.011 165.164
3339.069 196.634 61.846 197.327 110.497 197.873 150.567
4418.758 197.274 53.363 197.812 97.873 198.250 136.444

 

 
Contact Windows 

 Determining whether the additional speed through the atmosphere limited the 

contact windows of the satellite was also deemed necessary to determine.  To accomplish 

this study STK was used.  The choice to use STK vs. the MatLab code used in this thesis 

was simply because the tools necessary to analyze contact windows is already 

implemented in STK.   

 Satellites with the same COEs used throughout this analysis of this paper were 

generated in STK and a target for the satellites to view was generated at Dayton, OH 

(39°45'32" N / 84°11'30" W).  The average contact time was then used to determine if 

contact windows would be affected.  The length of the contact window for each initial 

eccentricity is tabulated in Table 17 on the next page.  It should be noted the orbital 

periods are not the same for each case as the initial altitude of apogee is changed; higher 

apogees will therefore have a longer orbital period. 
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Table 17: Contact Window Average Length 
Initial 

Altitude of 
Apogee 

(km) 

100 km 
Perigee 
(min) 

Initial 
Altitude of 

Apogee 
(km) 

80 km 
Perigee 
(min) 

165.107 5.18 144.906 4.85 
197.906 5.60 177.604 5.03 
230.871 5.88 210.467 5.55 
432.212 8.10 411.187 7.22 
781.909 10.07 759.804 9.90 
1150.509 12.60 1127.265 12.42 
1539.586 14.90 1515.142 14.88 
2386.401 20.75 2359.342 19.98 
3339.069 25.82 3309.069 25.87 
4418.758 33.28 4385.425 32.38 

 

 
Heating 

 Aerodynamic heating is one of the most important issues to address in ensuring 

this approach of dipping into atmosphere is feasible.  Although this thesis will not do an 

in depth analysis of the heating loads and the effects on the vehicle; trending will be 

studied using a non-dimensional approach presented by Dr. Hicks.  A complete 

breakdown of his method can be found in his book, Aerodynamic Re-entry.  The final 

equations for a skip re-entry are detailed below. 
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where: cf = the average skin coefficient 
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A = the total vehicle surface area 
CD = the coefficient of drag 
S = the “wetted” area of the vehicle 
γe = flight path angle at entry 
CL = the coefficient of lift 
Te = the initial non-dimensional re-entry kinetic energy 
g0 = the force of gravity at sea level 
r0 = the radius of the Earth 
RV0 = the relative velocity of the vehicle at re-entry 
m = the mass of the vehicle 

  

This particular analysis will look at five different entry angles; 2,3,4,5, and 6 

degrees, which are analogous to the flight path angle used earlier in this thesis.  In order 

for the satellite to survive the repeated atmospheric re-entries from the low altitude 

perigee orbits the angle must be small.  The reader can also estimate the effects of a 

larger re-entry angle by increasing the final heating loads discussed below by the 

percentage increase in the exponential of the new re-entry angle condition compared with 

the exponential of the old re-entry angle condition.   

For simplicity the average skin friction coefficient is divided out, as this particular 

coefficient is difficult to model however typical values range from 0-2.  The total surface 

area is assumed to be double that of the “wetted” area also for simplicity.  Figure 35 

shows Q/cf for the various L/D ratios versus the re-entry velocity.  The mass of the 

vehicle is held constant at 2000 kg. 
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Figure 35: Different L/D Heating Loads Based on Re-entry Velocity 

 
 

Figure 36, Figure 37, and Figure 38 provide a closer look at the lower heating 

lines and remove some of the lines to show the locations of overlapping lines not visible 

on the graph above. 
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Figure 36: Closer Look at Lower Heating Loads (1) 

 

 
Figure 37: Closer Look at Lower Heating Loads (2) 
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Figure 38: Closer Look at Lower Heating Loads (3) 

  
 

As Figures 35-38 show, the re-entry angle plays a major role in the amount of 

heat the spacecraft will experience.  Using a larger L/D ratio can mitigate this, but the 

larger re-entry velocities (larger radius of apogees) will need a significant amount of 

thermal protection, as these heating loads are similar to those of re-entry vehicles used 

today.  For example, the Apollo missions expected to see a heating load of approximately 

107 J/kg (Regan, 1984:436).  This compares with the worst case of 7x106 J/kg and best 

case of 9x105 J/kg for the analysis above. 

If the maximum re-entry angle can be maintained at a small angle, the amount of 

heating is significantly reduced.  The higher L/D ratios can also be used to reduce the 

amount of heat experienced by the vehicle on average 53.4% for L/D of 1.0 and 69.7% 

for L/D of 1.5.  However, the main way to reduce heat experienced by the vehicle will 
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utilize an active heat control system, such as ablation or heat sinks.  The design of the 

vehicle can significantly reduce the amount of heat experienced at the surface of the 

vehicle by using shocks to keep most of the heat away from the vehicle and only allow a 

small percentage of the total heat experienced during the re-entry event to get to the 

spacecraft.  This heat could then be dissipated back out to space as the spacecraft 

progresses through the rest of its orbit.  Further analysis will need to be completed in 

order to determine the type and size of heat control system needed. 
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Conclusion 

 
Chapter Overview 

 This chapter will discuss the conclusions of the author formed from the analysis.  

These conclusions will then be used to discuss why this particular thesis is significant and 

provide recommendations for future actions for the computer code to provide more 

detailed analysis.  Recommendations for future research will also be provided based on 

the conclusions of this thesis. 

 
Conclusions of Research 

Throughout the analysis of this thesis it has been shown using aerodynamic forces 

and skipping off the atmosphere can significantly improve the time on orbit when 

compared with a spacecraft not using these forces.  Analysis has shown the addition of a 

thruster does not necessarily provide great improvement for spacecraft with initial near 

circular orbits at low perigee altitudes.  These orbits also do not necessarily provide the 

improvements needed for a redesign of current spacecraft systems.   

For the more eccentric orbits at beginning of life the thruster does provide a 

significant improvement for time on orbit when compared with the non-thruster satellites 

with and without waverider designs.  An important aspect to note is the quick depletion 

of fuel for the thruster.  As the orbit became more elliptical the thruster quickly 

transitioned to a constantly on device.  This resulted in the fuel being used in the first few 

orbits.  Further analysis should be completed in order to determine if removing the fuel 

and weight of the thruster would result in a better improvement in time on orbit due to the 

reduced weight than that of the increase from the thruster. 
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Heating analysis also shows the spacecraft can survive repeated skip re-entry 

events as long as an active heat control system is used and is able to dump the heat 

acquired during the events.  Using higher L/D ratios would not only provide for a longer 

time on orbit but also decrease the heat load experienced by the spacecraft during a skip 

across the atmosphere at perigee.  This higher L/D ratio would also allow for a greater 

range in re-entry angle the spacecraft could enter at with the same heat load for a 

spacecraft with a lower L/D ratio.  Although initial analysis shows the spacecraft can 

survive these repeated skip re-entries, a large degree of further analysis needs to be 

completed in order to determine the optimum design of the vehicle for heating.   

 
Significance of Research 

A spacecraft utilizing the waverider design could greatly increase the resolution 

of an ORS satellite.  Assuming a responsive launch capability can be developed a 

waverider spacecraft could be launched into an eccentric orbit with a low perigee and still 

maintain a short revisit time while greatly increasing the resolution capabilities.  This 

waverider spacecraft would re-enter in a much shorter timeframe than current satellites, 

most likely under a month.  However, the waverider design and heat control system 

would provide the added benefit of survivability during the final re-entry event.  Further 

analysis and larger time steps during non-perigee transitions of the orbit analysis for the 

code could provide increased knowledge on the largest attainable orbit lifetime.   

This type of vehicle can also lay the foundation for SR type missions.  Although 

many other technological advancements are needed to make SR missions feasible the 

waverider spacecraft design and larger elliptical orbits could greatly increase the number 
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of reachable locations.  This type of orbit also allows the spacecraft to drop the collected 

debris off during a perigee event and potentially increases the amount of space debris 

collection.  As stated earlier many other advancements in debris collection and debris de-

orbiting technology are needed, but this analysis does provide groundwork for future 

debris removal options. 

 
Recommendations for Action 

The next step in furthering the analysis of this paper is to conduct more 

simulations for larger eccentricities and larger initial radiuses of perigee.  The low 

number of orbits even with the thruster and aerodynamic forces for the 80 km perigee 

orbit shows future analysis should concentrate on larger perigees.  This analysis would 

allow a determination of the optimum radius of perigee for contemplating a spacecraft 

using aerodynamic forces versus a traditional satellite.  Eventually the eccentricity of the 

orbit will increase the orbital period to a point where a traditional satellite in a near 

circular larger semi-major axis is more appropriate for the mission. 

An extensive analysis into the design and expected heating loads will need to be 

conducted in order to move this spacecraft design past the drawing board.  The 

potentially high and repeatability of the heating loads this type of mission would 

experience makes heating management the driving factor of the mission.  The risk 

associated with this heating analysis could be alleviated by borrowing practices from past 

and present missions such as the Apollo, Space Transportation System, and X-37B 

missions.   
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Recommendations for Future Research 

The X-37B would also provide insight into the accuracy of the model by 

conducting its own high eccentricity, low perigee orbits and measuring the aerodynamic 

loads experienced.  This would require an accurate model of the X-37B. 

The computer model code can also be improved upon by creating algorithms for 

measuring the flight path angle, angle of attack, re-entry angle, and roll angle in real time.  

This would allow for a more dynamic modeling of the aerodynamic forces and greatly 

increase the accuracy of the model.  It would also allow the user to better choose the type 

of conditions associated with the perigee events (re-entry angle, wet area, etc.).  A real 

time modeling of the heating loads could also be incorporated in order to have the heating 

analysis for any simulation on hand right after the simulation run.  The incorporation of 

the different angles would also allow for the user to create more complex models that use 

many surface areas of different sizes. 
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Appendix A: Space Plane Requirement 

                  Requirements Matrix for Mark II, III and IV                    
                             (Desired for Mark I)                                
 
        Requirement                   Threshold             Objective         
 
Sortie Utilization Rates                                                           
 
Peacetime sustained                0.10 sortie/day       0.20 sortie/day      
 
War/exercise sustained (30 days)  0.33 sortie/day       0.50 sortie/day      
 
War/exercise surge (7 days)       0.50 sortie/day       1.00 sortie/day      
 
Turn Times                                                                         
 
Emergency war or peace                      8 hours             2 hours          
 
MOB peacetime sustained                      2 days             1 day           
 
MOB war/exercise sustained (30 days)        18 hours           12 hours         
 
MOB war/exercise surge (7 days)             12 hours            8 hours          
 
DOL peacetime sustained                      3 days             1 day           
 
DOL war/exercise sustained (30 days)        24 hours           12 hours         
 
DOL war/exercise surge (7 days)             18 hours            8 hours          
 
System Availability                                                                
 
Mission capable rate                       80 percent        95 percent        
 
Flight and Ground Environments                                                     
 
Visibility                                    0 ft                 0 ft           
 
Ceiling                                       0 ft                 0 ft           
 
Crosswind component                         25 knots           35 knots         
 
Total wind                                  40 knots           50 knots         
 
Icing                                   light        moderate  
       rime icing          rime icing    
 
Absolute humidity                          30 gms/m3          45 gms/m3         
 
Upper level winds                       95th percentile     all shear  
       shear         conditions   
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Outside temperature                       -20 to 100F       -45 to 120F        
 
Precipitation                                light           moderate         
 
Space Environment                                                                  
 
Radiation level                               TBD                   TBD            
 
Flight Safety                                                                      
 
Risk to friendly population                < 1 x 10-6       < 1 x 10-7        
 
Flight Segment loss                    < 1 loss /2000     < 1 loss/5000  
         sorties             sorties                    
 
Reliability                                  0.9995             0.9998          
 
Cross Range                                                                        
 
Unrestricted pop-up cross range              600 NM             1200 NM          
 
CONUS pop-up cross range                     400 NM              600 NM          
 
Orbital cross range                         1200 NM             2400 NM          
 
"Pop-up" Range                                                                     
 
CONUS pop-up range                          1600 NM             1200 NM          
 
Ferry range minimum                         2000 NM           worldwide         
 
On-orbit Maneuver                                                                  
 
Excess V (at expense of payload)            300 fps             600 fps          
 
Pointing accuracy                     15 milliradians   10 milliradians      
 
Mission Duration                                                                   
 
On-orbit time                               24 hours           72 hours         
 
Emergency extension on-orbit                12 hours           24 hours         
 
Orbital Impact                                                                     
 
Survival impact object size             0.1-cm diameter   1-cm diameter       
 
Survival impact object mass                   TBD                   TBD            
 
Survival impact velocity                      TBD                   TBD            
 
Alert Hold                                                                         
 
Hold Mission Capable                        15 days             30 days          
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Mission Capable to Alert 2-hour             4 hours             2 hours          
Status                                                                             
 
Hold Alert 2-hour Status                     3 days              7 days          
 
Alert 2-hour to Alert 15-minute        1 hour 45 minutes     30 minutes        
Status                                                                             
 
Hold Alert 15-minute Status                 12 hours           24 hours         
 
Alert 15 Minute to Launch                  15 minutes         5 minutes         
 
Design Life                                                                       
 
Primary Structure                         250 sorties       500 sorties       
 
Time between major overhauls              100 sorties       250 sorties       
 
Engine life                               100 sorties       250 sorties       
 
Time between engine overhauls              50 sorties       100 sorties       
 
Subsystem life                            100 sorties       250 sorties       
 
Take-off and Landing                                                              
 
Runway size                            10,000 ft x 150 ft 8000 ft x 150 
ft     
 
Runway load bearing                           S65                   S45           
 
Vertical landing accuracy                    50 ft                25 ft          
 
Payload Container                                                                 
 
Container change-out                         1 hour          30 minutes        
 
Crew Station Environment (if rqd)                                                 
 
Life support duration                       24 hours           72 hours         
 
Emergency extension on-orbit                12 hours           24 hours         
 
Crew Escape (if rqd)                                                              
 
Escape capability                           subsonic      full envelope      
 
Maintenance and Support                                                           
 
Maintenance work hours/sortie              100 hours           50 hours         
 
R&R engine                                  8 hours             4 hours         
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Appendix B: MatLab Script Files 

GaussianVOPMain.m 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  MAIN routine for Gaussian VOP Equations 
%  INPUT: Initial COEs  
%  OUPUT: COEs vs time, Coverage Percentage,  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
close all 
clear all 
clc 
format long 
  
%% Initialize variables 
close all 
clear all 
clc 
format long 
wgs84data 
global  MU RE J2  EEsqrd RadPerDay TwoPI outctr ... 
    Fsdragoutstep Frdragoutstep Fwdragoutstep ... 
    Fsliftoutstep Frliftoutstep Fwliftoutstep ... 
    Fsthrustoutstep Frthrustoutstep Fwthrustoutstep ... 
    tavststep rpdeloutstep mass abegin aend initmassfuel initmass % declare global vars 
so I don't have to pass them between subroutines 
  
file=[6648.137, 0.005, deg2rad(40), deg2rad(0), deg2rad(0), deg2rad(0);... 
      6527.09, 0.0075, deg2rad(40), deg2rad(0), deg2rad(0), deg2rad(180);...  
      6543.573, 0.01, deg2rad(40), deg2rad(0), deg2rad(0), deg2rad(180);... 
      6644.243, 0.25, deg2rad(40), deg2rad(0), deg2rad(0), deg2rad(180);... 
      6819.092, 0.5, deg2rad(40), deg2rad(0), deg2rad(0), deg2rad(180);... 
      7003.391, 0.075, deg2rad(40), deg2rad(0), deg2rad(0), deg2rad(180);... 
      7197.93, 0.1, deg2rad(40), deg2rad(0), deg2rad(0), deg2rad(180);... 
      7621.338, 0.15, deg2rad(40), deg2rad(0), deg2rad(0), deg2rad(180);... 
      8097.671, 0.2, deg2rad(40), deg2rad(0), deg2rad(0), deg2rad(180);... 
      8637.516, 0.25, deg2rad(40), deg2rad(0), deg2rad(0), deg2rad(180);... 
      ]; 
   
 iteration=1; 
while iteration <= 1 
  
  
%% Begin Code 
  
abegin=0; 
aend=0; 
tout(1,1)=0; 
outctr=1; 
initmass=2000; 
initmassfuel=200; 
targetlong=276*pi/180; 
targetlat=40*pi/180; 
MaxViewAngle=90*pi/180; 
x_0 = [file(iteration,1), file(iteration,2), file(iteration,3), file(iteration,4),... 
     file(iteration,5), file(iteration,6)]; % [a, e, inc, raan, arp, ma,] 
rpinit=x_0(1,1)-x_0(1,1)*x_0(1,2); 
t_0 = 0;  %intial time 
dt=60;   %time step (seconds) 
Yr = 2011; 
Mon = 6; 
D = 3; 
H = 12; 
M = 0; 
S =  0; 
JD=julianday(Yr,Mon,D,H,M,S); 
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x=[0,0,0,0,0,0]; 
t=0; 
xstep=x_0; 
x(1,:)=x_0; 
t(1,1)=0; 
  
tavst(outctr,1)=0; 
  
Fsdragout(1,1)=0; 
Frdragout(1,1)=0; 
Fwdragout(1,1)=0; 
  
Fsliftout(1,1)=0; 
Frliftout(1,1)=0; 
Fwliftout(1,1)=0; 
  
Fsthrustout(1,1)=0; 
Frthrustout(1,1)=0; 
Fwthrustout(1,1)=0; 
  
massout(1,1)=initmass; 
rpdelout(1,1)=0; 
mass=initmass; 
  
%% Propogate 
tstep=0; 
while x(end,1)*(1-x(end,2))>6428 && tstep<25000 && x(end,2)>0.001; 
options=odeset('MaxStep',5); 
t_start=tstep; 
t_end=tstep+dt; 
[tout,xout]=ode45(@COEDeltasNew,[t_start,t_end],xstep,options); 
  
% Compute output files 
tavst(outctr,1)=tavststep; 
  
Fsdragout(outctr+1,1)=Fsdragoutstep; 
Frdragout(outctr+1,1)=Frdragoutstep; 
Fwdragout(outctr+1,1)=Fwdragoutstep; 
  
Fsliftout(outctr+1,1)=Fsliftoutstep; 
Frliftout(outctr+1,1)=Frliftoutstep; 
Fwliftout(outctr+1,1)=Fwliftoutstep; 
  
Fsthrustout(outctr+1,1)=Fsthrustoutstep; 
Frthrustout(outctr+1,1)=Frthrustoutstep; 
Fwthrustout(outctr+1,1)=Fwthrustoutstep; 
  
massout(outctr+1,1)=mass; 
rpdelout(outctr+1,1)=rpdeloutstep; 
  
  
t(outctr+1,1)=tout(end,1); % Plus one due to time of 0 
x(outctr+1,:)=xout(end,:); % Plus one due to zero being x_0 
  
% Step to next iteration 
outctr=outctr+1; 
tstep=tout(end,1); 
xstep=xout(end,:); 
end 
  
%% Find ground track and coverage plots 
gtctr=1; 
while gtctr<=t_end/dt+1; 
  
a=x(gtctr,1); 
e=x(gtctr,2); 
inc=x(gtctr,3); 
raan=x(gtctr,4); 
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arp=x(gtctr,5); 
ma=x(gtctr,6); 
  
  
% Find Eccentric anomaly from mean anomaly 
E=0; 
Enew=revcheck(ma,2*pi); 
  
while Enew-E>0.0001; 
E=Enew; 
mcheck=E-e*sin(E); 
Enew=E+revcheck(ma,2*pi)-mcheck; 
end 
E=Enew; 
  
%% Graph Ground Track and Determine if target is within view of satellite 
% Find true anomaly from eccentric anomaly 
ta=acos((cos(E)-e)/(1-e*cos(E))); 
if E<=pi; 
    ta=ta; 
else 
    ta=2*pi-ta; 
end; 
  
% compute R and V in pqw frame 
[rpqw,vpqw]=RVpqw(a,e,ta); 
  
% rotate into the ijk frame 
[rijk,vijk]=RVijk(rpqw,vpqw,inc,raan,arp); 
  
RIJK(gtctr,1)=rijk(1,1); 
RIJK(gtctr,2)=rijk(2,1); 
RIJK(gtctr,3)=rijk(3,1); 
VIJK(gtctr,1)=vijk(1,1); 
VIJK(gtctr,2)=vijk(2,1); 
VIJK(gtctr,3)=vijk(3,1); 
  
%Find updated Julian Date 
if gtctr==1 
    JD=JD; 
else 
    JD=JD+dt/86400; 
end 
  
%Find Greenwich Mean Sidereal Time 
GMST=gstime(JD); 
  
%%Determine if target is within view angle 
%Update longitude with GMST 
targetlongGMST=GMST+targetlong; 
  
%Find target in IJK frame 
targetIJK=[RE*sin(targetlongGMST)*cos(targetlat);... 
           RE*sin(targetlongGMST)*cos(targetlat);... 
           RE*sin(targetlat)]; 
        
%Find vector from satellite to target 
SattoTargetIJK=targetIJK-rijk; 
  
%Find angle between satellite to target vector and satellite vector 
CurrentViewAngle(gtctr,1)=acos(dot(rijk,SattoTargetIJK)/(mag(rijk)*mag(SattoTargetIJK))); 
  
%Determine if current view angle is less than max allotted view angle 
if CurrentViewAngle(end,1)<MaxViewAngle 
    viewcheckangle=1; 
else 
    viewcheckangle=0; 
end; 
  



 

 88

%Determine if satellite's line of sight crosses through Earth 
CrossedEarth = CrossThroughEarth(rijk,targetIJK); 
  
%Find geodetic latitude and longitude directly below satellite 
gclatr=sqrt(RIJK(gtctr,1)^2+RIJK(gtctr,2)^2); 
alpha=acos(RIJK(gtctr,1)/gclatr); 
if RIJK(gtctr,2)>=0; 
    alpha=alpha; 
else 
    alpha=2*pi-alpha; 
end; 
gdlong=alpha-GMST; 
gclat=atan2(RIJK(gtctr,3),gclatr); 
gdlat=gclat; 
gdlato=0; 
rK=RIJK(gtctr,3); 
while gdlat-gdlato>0.1; 
gdlato=gdlat; 
C=RE/(sqrt(1-EEsqrd*(sin(gdlat)^2))); 
gdlat=atan2((rK+C*EEsqrd*sin(gdlat)),gclatr); 
end; 
  
%Determine if view checks pass 
if CrossedEarth&&viewcheckangle==1 
    viewcheck=1; 
else 
    viewcheck=0; 
end; 
% Convert to degrees 
gdlat=gdlat*180/pi; 
gdlong=gdlong*180/pi; 
  
% Consolidate latitudes and longitudes and whether or not in view 
gdlatout(gtctr,1)=gdlat; 
gdlongout(gtctr,1)=gdlong; 
viewcheckout(gtctr,1)=viewcheck; 
  
gtctr=gtctr+1; 
end 
  
% Plot the Latitudes and Longitudes 
%figure  % create a new figure 
%plot(gdlongout,gdlatout);  %plot the Latitude vs Longitude 
%title('Latitude and Longitude'); ylabel('deg'); xlabel('deg'); 
  
% Plot the coverage times 
%figure 
%plot(t,viewcheckout);  %plot the Coverage vs. time 
%title('Satellite Coverage'); ylabel('Coverage'); xlabel('seconds'); 
  
%% Plot the COEs 
%figure  % create a new figure 
%subplot(3,1,1);  plot(t,x(:,1)); %plot the Semi-major axis vs time 
%title('Semi-major Axis'); ylabel('km'); xlabel('time');  
%subplot(3,1,2);  plot(t,x(:,2)); %plot the Eccentricity vs time 
%title('Eccentricity'); ylabel('unitless'); xlabel('time');  
%subplot(3,1,3);  plot(t,x(:,3)); %plot the Inclination vs time 
%title('Inclination'); ylabel('rad'); xlabel('time');  
  
%figure % create a new figure 
%subplot(3,1,1);  plot(t,x(:,4)); %plot the RAAN vs time 
%title('RAAN'); ylabel('rad'); xlabel('time');  
%subplot(3,1,2);  plot(t,x(:,5)); %plot the Argument of Perigee vs time 
%title('Argument of Perigee'); ylabel('rad'); xlabel('time');  
%subplot(3,1,3);  plot(t,x(:,6)); %plot the Mean Anomaly vs time 
%title('Mean Anomaly'); ylabel('rad'); xlabel('time');  
  
%% Plot the Forces, mass, and rpdel vs time 
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ctr=1; 
while ctr<=length(t) 
Forcedrags(ctr,1)=Fsdragout(ctr,1)*massout(ctr,1); 
Forcedragr(ctr,1)=Frdragout(ctr,1)*massout(ctr,1); 
Forcedragw(ctr,1)=Fwdragout(ctr,1)*massout(ctr,1); 
  
Forcelifts(ctr,1)=Fsliftout(ctr,1)*massout(ctr,1); 
Forceliftr(ctr,1)=Frliftout(ctr,1)*massout(ctr,1); 
Forceliftw(ctr,1)=Fwliftout(ctr,1)*massout(ctr,1); 
  
Forcethrusts(ctr,1)=Fsthrustout(ctr,1)*massout(ctr,1); 
Forcethrustr(ctr,1)=Frthrustout(ctr,1)*massout(ctr,1); 
Forcethrustw(ctr,1)=Fwthrustout(ctr,1)*massout(ctr,1); 
ctr=ctr+1; 
end; 
  
%figure  % create a new figure 
%subplot(3,1,1);  plot(t,Forcedrags(:,1)); %plot the Drag Force in the s direction vs 
time 
%title('Drag S'); ylabel('N'); xlabel('time');  
%subplot(3,1,2);  plot(t,Forcedragr(:,1)); %plot the Drag Force in the r direction vs 
time 
%title('Drag R'); ylabel('N'); xlabel('time');  
%subplot(3,1,3);  plot(t,Forcedragw(:,1)); %plot the Drag Force in the w direction vs 
time 
%title('Drag W'); ylabel('N'); xlabel('time');  
  
%figure  % create a new figure 
%subplot(3,1,1);  plot(t,Forcelifts(:,1)); %plot the Lift Force in the s direction vs 
time 
%title('Lift S'); ylabel('N'); xlabel('time');  
%subplot(3,1,2);  plot(t,Forceliftr(:,1)); %plot the Lift Force in the r direction vs 
time 
%title('Lift R'); ylabel('N'); xlabel('time');  
%subplot(3,1,3);  plot(t,Forceliftw(:,1)); %plot the Lift Force in the w direction vs 
time 
%title('Lift W'); ylabel('N'); xlabel('time');  
  
%figure  % create a new figure 
%subplot(3,1,1);  plot(t,Forcethrusts(:,1)); %plot the Thrust Force in the s direction vs 
time 
%title('Thrust S'); ylabel('N'); xlabel('time');  
%subplot(3,1,2);  plot(t,Forcethrustr(:,1)); %plot the Thrust Force in the r direction vs 
time 
%title('Thrust R'); ylabel('N'); xlabel('time');  
%subplot(3,1,3);  plot(t,Forcethrustw(:,1)); %plot the Thrust Force in the w direction vs 
time 
%title('Thrust W'); ylabel('N'); xlabel('time');  
  
%figure % create a new figure 
%plot(t,rpdelout(:,1)); %plot the change in radius of perigee vs time 
%title('Change in Radius of Perigee'); ylabel('km/s'); xlabel('time');  
  
%figure % create a new figure 
%plot(t,massout(:,1)); %plot the mass vs time 
%title('Spacecraft Mass'); ylabel('kg'); xlabel('time');  
  
%% Create Data for Plots 
TimeMax(iteration,1) = max(t); 
NumOrbits(iteration,1) = max(x(:,6))/(2*pi); 
FuelMax(iteration,1) = initmass - min(massout); 
eplot(iteration,1)=file(iteration,2); 
  
%% 
% Save to excel file 
if iteration==1 
filename='check file drag'; 
end 
if iteration==2 
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filename='rp100_NoLift_NoThrust_e0075.xlsx'; 
end 
if iteration==3 
filename='rp100_NoLift_NoThrust_e01.xlsx'; 
end 
if iteration==4 
filename='rp100_NoLift_NoThrust_e025.xlsx'; 
end 
if iteration==5 
filename='rp100_NoLift_NoThrust_e05.xlsx'; 
end 
if iteration==6 
filename='rp100_NoLift_NoThrust_e075.xlsx'; 
end 
if iteration==7 
filename='rp100_NoLift_NoThrust_e1.xlsx'; 
end 
if iteration==8 
filename='rp100_NoLift_NoThrust_e15.xlsx'; 
end 
if iteration==9 
filename='rp100_NoLift_NoThrust_e2.xlsx'; 
end 
if iteration==10 
filename='rp100_NoLift_NoThrust_e25.xlsx'; 
end 
xlswrite(filename, t, 'Sheet1', 'A2'); 
xlswrite(filename, x, 'Sheet1', 'B2'); 
%xlswrite(filename, Forcedrags, 'Sheet1', 'H2'); 
%xlswrite(filename, Forcedragr, 'Sheet1', 'I2'); 
%xlswrite(filename, Forcedragw, 'Sheet1', 'J2'); 
%xlswrite(filename, Forcelifts, 'Sheet1', 'K2'); 
%xlswrite(filename, Forceliftr, 'Sheet1', 'L2'); 
%xlswrite(filename, Forceliftw, 'Sheet1', 'M2'); 
%xlswrite(filename, Forcethrusts, 'Sheet1', 'N2'); 
%xlswrite(filename, Forcethrustr, 'Sheet1', 'O2'); 
%xlswrite(filename, Forcethrustw, 'Sheet1', 'P2'); 
%xlswrite(filename, massout, 'Sheet1', 'Q2'); 
%xlswrite(filename, gdlatout, 'Sheet1', 'R2'); 
%xlswrite(filename, gdlongout, 'Sheet1', 'S2'); 
%xlswrite(filename, viewcheckout, 'Sheet1', 'T2'); 
  
xlswrite('Plots.xlsx', eplot, 'Sheet1', 'A2'); 
xlswrite('Plots.xlsx', TimeMax, 'Sheet1', 'B2'); 
xlswrite('Plots.xlsx', NumOrbits, 'Sheet1', 'C2'); 
xlswrite('Plots.xlsx', FuelMax, 'Sheet1', 'D2'); 
  
%% Output to MatLab 
%rpfinal=x(end,1)-x(end,1)*x(end,2); 
%rpfinalalt=rpfinal-6378.137 
%rpchange=rpfinal-rpinit 
%massfinal=massout(end,1) 
%deltaV=161*9.81*log(150/massfinal) 
%mafinal=x(end,6); 
%mafinal=revcheck(mafinal,2*pi); 
%mafinal=rad2deg(mafinal) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
iteration=iteration+1; 
end 
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COEDeltas.m 
 

function [xdot]=COEDeltasNew(t,x)  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  MAIN routine for Gaussian VOP Calculations 
%  INPUT: COEs  
%         x(1)=a 
%         x(2)=e 
%         x(3)=inc 
%        x(4)=raan 
%         x(5)=arp 
%        x(6)=ma     
% 
%  OUPUT: COE Deltas 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
global MU J2 RE ... 
    Fsdragoutstep Frdragoutstep Fwdragoutstep ... 
    Fsliftoutstep Frliftoutstep Fwliftoutstep ... 
    Fsthrustoutstep Frthrustoutstep Fwthrustoutstep ... 
    tavststep rpdeloutstep mass abegin aend initmassfuel initmass % declare global vars  
  
%% 
% Get COEs from state vector 
a=x(1); 
e=x(2); 
inc=x(3); 
raan=x(4); 
arp=x(5); 
ma=x(6); 
if ma>2*pi 
    ma=ma-2*pi; 
end 
  
%% 
% Define Spacecraft Parameters 
fpa=2*pi/180; 
Cd=1; 
Cl=0; 
A=2.67e-6; % Needs to be in km^2 
Isp=200; 
thrust=1/1000; % divide by 1000 to be in N-km/s^2 vs N-m/s^2 
mdot=(thrust/(Isp*9.81/1000)); 
  
%% 
% Find Eccentric anomaly from mean anomaly 
E=0; 
Enew=ma; 
while Enew-E>0.0001; 
E=Enew; 
mcheck=E-e*sin(E); 
Enew=E+ma-mcheck; 
end; 
E=Enew; 
  
% Find true anomaly from eccentric anomaly 
ta=acos((cos(E)-e)/(1-e*cos(E))); 
if E<=pi; 
    ta=ta; 
else 
    ta=2*pi-ta; 
end; 
  
% Find latitude periapsis 
u=arp+ta; 
  
% Find mean motion 
n=sqrt(MU/a^3); 
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% Find semi-latus rectum 
p=a*(1-e^2); 
  
% Find r 
r=p/(1+e*cos(ta)); 
  
% Find angular momentum 
h=sqrt(r*(1+e*cos(ta))*MU); 
  
%% 
% compute R and V in pqw frame 
[rpqw,vpqw]=RVpqw(x(1),x(2),ta); 
  
% rotate into the ijk frame 
[rijk,vijk]=RVijk(rpqw,vpqw,x(3),x(4),x(5)); 
  
%%  
% Find needed control angle 
if ta<deg2rad(315) && ta>=deg2rad(300); 
    abegin=x(1); 
else 
end 
  
if ta<deg2rad(45) && ta>=deg2rad(0); 
    aend=x(1); 
else 
end 
  
adelta=abegin-aend; 
  
controlangle=adelta*MU/(4*(x(1)^3)*thrust*sqrt(1-(x(2)^2))); 
  
controlangle=acos((cos(controlangle)-e)/(1-e*cos(controlangle))); 
  
%% 
% Thrust Profile 
if ta>=pi-controlangle && ta<pi+controlangle; 
    if initmassfuel-mdot*t>0 
        %mass=initmass-mdot*t; 
        Fsthrust=thrust/mass; 
        Fsthrust=0; 
    else 
        Fsthrust=0; 
    end 
else 
    Fsthrust=0; 
end 
  
if x(2)<0.001; 
    Fsthrust=0; 
else 
    Fsthrust=Fsthrust; 
end 
  
if ta>=pi-controlangle && ta<pi+controlangle; 
    if initmassfuel-mdot*t>0 
        %mass=initmass-mdot*t; 
        Frthrust=0; 
    else 
        Frthrust=0; 
    end 
else 
    Frthrust=0; 
end 
  
if x(2)<0.001; 
    Frthrust=0; 
else 
    Frthrust=Frthrust; 
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end 
  
if ta>=pi-controlangle && ta<pi+controlangle; 
    if initmassfuel-mdot*t>0 
        %mass=initmass-mdot*t; 
        Fwthrust=0; 
    else 
        Fwthrust=0; 
    end 
else 
    Fwthrust=0; 
end 
  
if x(2)<0.001; 
    Fwthrust=0; 
else 
    Fwthrust=Fwthrust; 
end 
  
%% Force due to drag 
vrelsq=((n^2*a^2)/(1-e^2))*(1+(e^2)+(2*e*cos(ta))); 
rho=atmos76(rijk); 
Fsdrag=-(0.5*rho*(Cd*A/mass))*vrelsq*cos(fpa); 
Frdrag=(0.5*rho*(Cd*A/mass))*vrelsq*sin(fpa); 
Fwdrag=0; 
  
%% Force due to lift 
Fslift=(0.5*rho*(Cl*A/mass))*vrelsq*sin(fpa);  
Frlift=(0.5*rho*(Cl*A/mass))*vrelsq*cos(fpa); 
Fwlift=0; 
  
%% Add all Forces 
Fs=Fsdrag+Fslift+Fsthrust; 
Fr=Frdrag+Frlift+Frthrust; 
Fw=Fwdrag+Fwlift+Fwthrust; 
  
%% Changes in COEs due to forces 
% Compute change in semi-major axis 
adel=((2*e*sin(ta))/(n*sqrt(1-e^2)))*Fr+((2*a*sqrt(1-e^2))/(n*r))*Fs; 
  
% Compute change eccentricity 
edel=((sqrt(1-e^2)*sin(ta))/(n*a))*Fr+((sqrt(1-e^2)/(n*a^2*e))*((a^2*(1-e^2)/r)-r))*Fs; 
  
% Compute change in inclination 
incdel=(r*cos(u)/(n*a^2*sqrt(1-e^2)))*Fw; 
  
% Compute change in Right Ascension of the ascending node 
raandel=(r*sin(u)/(n*a^2*sqrt(1-e^2)*sin(inc)))*Fw; 
  
% Compute change in argument of perigee 
arpdel=(-sqrt(1-e^2)*cos(ta)/(n*a*e))*Fr+((p/(e*h))*(sin(ta)*(1+(1/(1+e*cos(ta))))))*Fs-
(r*cot(inc)*sin(u)/(n*a^2*sqrt(1-e^2)))*Fw; 
  
% Compute change in mean anomaly epoch 
madelepoch=(1/(n*a^2*e))*((p*cos(ta)-2*e*r)*Fr-((p+r)*sin(ta))*Fs); 
  
% Compute change in radius of perigee 
rpdel=adel-e*adel-a*edel; 
  
%% Changes in Right Ascension of the Ascending Node and Argument of Perigee due to J2 and 
J3 
% Change in Right Ascension of the Ascending Node 
%raandelJ2=-1.5*n*J2*((RE/a)^2)*cos(inc)/((1-e^2)^2); 
  
% Change in Argument of Perigee 
%arpdelJ2=0.75*n*J2*((RE/a)^2)*(4-5*(sin(inc)^2))/((1-e^2)^2); 
  
% Compute final deltas 
madel=madelepoch+n; 



 

 94

%raandel=raandel; %+raandelJ2; 
%arpdel=arpdel; %+arpdelJ2; 
  
% Find xdot vector 
xdot=[adel;edel;incdel;raandel;arpdel;madel]; 
  
% Compute variables for output files 
tavststep=ta; 
  
Fsdragoutstep=Fsdrag; 
Frdragoutstep=Frdrag; 
Fwdragoutstep=Fwdrag; 
  
Fsliftoutstep=Fslift; 
Frliftoutstep=Frlift; 
Fwliftoutstep=Fwlift; 
  
Fsthrustoutstep=Fsthrust; 
Frthrustoutstep=Frthrust; 
Fwthrustoutstep=Fwthrust; 
  
rpdeloutstep=rpdel; 
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CrossThroughEarth.m 
 

function CrossedEarth = CrossThroughEarth(rijk,targetIJK) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%- 
%% 
%%  Use           : CrossEarth = CrossThroughEarth(rijk,targetIJK) 
%% 
%%  This function determines whether the satellite is looking through Earth  
%%  to see a target. 
%% 
%%  Algorithm     : Finds a unit vector from the target to the satellite and  
%%          adds it to the target vector to create a displaced vector.   
%%          This vector is then compared to the radius of Earth to  
%%          determine if the satellite is looking through the Earth. 
%% 
%%  Author        : Lt Matt Goodson    USAFA/AFIT  505-803-4872  19 July 2011 
%% 
%%  Inputs        : 
%%    rijk        - Satellite IJK vector                 km 
%%    targetIJK   - Target IJK vector            km 
%% 
%%  OutPuts       : 
%%    CrossEarth  - Check Parameter                  1 or a 0 
%%                  1 for not crossing Earth 
%%                  0 for crossing Earth 
%% 
%%  Constants     : 
%%    RE          - radius of the Earth          km 
%% 
%%  Coupling      : 
%%    mag      determines magnitude of a vector 
%% 
%%  References    : 
%%    None 
%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
%% Constants 
global RE 
  
%Find Lengths of vector components of vector from target to satellite 
Ilength=rijk(1,1)-targetIJK(1,1); 
Jlength=rijk(2,1)-targetIJK(2,1); 
Klength=rijk(3,1)-targetIJK(3,1); 
Gain=1; 
  
%Find magnitude of new vector 
mag=sqrt(Ilength^2+Jlength^2+Klength^2); 
  
%Find unit vectors of new vector 
Iunit=Ilength/mag; 
Junit=Jlength/mag; 
Kunit=Klength/mag; 
  
%Find displaced vector 
DisplacedIJK=[targetIJK(1,1)+Iunit*Gain;targetIJK(2,1)+Junit*Gain;targetIJK(3,1)+Kunit*Ga
in]; 
  
%Find magnitude of displaced vector 
magDisplacedIJK=sqrt(DisplacedIJK(1,1)^2+DisplacedIJK(2,1)^2+DisplacedIJK(3,1)^2); 
  
if magDisplacedIJK>RE 
    CrossedEarth=1; 
else 
    CrossedEarth=0; 
end 
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wgs84data.m 
 

function wgs84data 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%                function wgs84data 
%% This script provides global conversion factors and WGS 84 constants 
%% that may be referenced by subsequent MatLab script files and functions. 
%% Note these variables are case-specific and must be referenced as such. 
%% 
%% The function must be called once in either the MatLab workspace or from a 
%% main program script or function. Any function requiring all or some of the 
%% variables defined must be listed in a global statement as follows, 
%% 
%%  global Deg Rad MU RE OmegaEarth SidePerSol RadPerDay SecDay Flat EEsqrd ... 
%%         EEarth J2 J3 J4 GMM GMS AU HalfPI TwoPI Zero_IE Small Undefined 
%% 
%% in part or in its entirety. Order is not relevent. Case is. 
%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%       Originally written by Capt Dave Vallado 
%%       Modified and Extended for Ada by Dr Ron Lisowski 
%%       Extended from DFASMath.adb by Thomas L. Yoder, LtCol, Spring 00 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
global Deg Rad MU RE OmegaEarth SidePerSol RadPerDay SecDay Flat EEsqrd ...  
       EEarth J2 J3 J4 GMM GMS AU HalfPI TwoPI Zero_IE Small Undefined 
  
%%  Degrees and Radians 
      Deg=180.0/pi;                     %% deg/rad 
      Rad= pi/180.0;                    %% rad/deg 
  
%%  Earth Characteristics from WGS 84  
      MU=398600.5;                      %% km^3/sec^2 
      RE=6378.137;                      %% km 
      OmegaEarth=0.000072921151467;     %% rad/sec 
      SidePerSol=1.00273790935;         %% Sidereal Days/Solar Day 
      RadPerDay=6.30038809866574;       %% rad/day 
      SecDay=86400.0;                   %% sec/day 
      Flat=1.0/298.257223563;           %% 
      EEsqrd=(2.0-Flat)*Flat; 
      EEarth=sqrt(EEsqrd); 
      J2= 0.00108263; 
      J3=-0.00000254; 
      J4=-0.00000161; 
  
%%  Moon & Sun Characteristics from WGS 84  
      GMM= 4902.774191985;              %% km^3/sec^2 
      GMS= 1.32712438E11;               %% km^3/sec^2 
      AU=  149597870.0;                 %% km 
  
%%  HALFPI,PI2           PI/2, & 2PI in various names 
      HalfPI= pi/2.0; 
      TwoPI= 2.0*pi; 
  
      Zero_IE  = 0.015;                 %% Small number for incl & ecc purposes 
      Small    = 1.0E-6;                %% Small number used for tolerance purposes 
      Undefined= 999999.1; 
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gstime.m 
 

function Temp = gstime ( JD ) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%- 
%% 
%%  Use           : Temp = gstime ( JD ) 
%% 
%%  This function finds the Greenwich Sidereal time.  Notice just the integer 
%%    part of the Julian Date is used for the Julian centuries calculation. 
%% 
%%  Algorithm     : Perform expansion calculation to obtain the answer 
%%                  Check the answer for the correct quadrant and size 
%% 
%%  Author        : Capt Dave Vallado  USAFA/DFAS  719-472-4109  12 Feb 1989 
%%  In Ada        : Dr Ron Lisowski    USAFA/DFAS  719-472-4110  17 May 1995 
%%  In MatLab     : Dr Ron Lisowski    USAFA/DFAS  719-333-4109   2 Jul 2001 
%% 
%%  Inputs        : 
%%    JD          - Julian Date                          days from 4713 B.C. 
%% 
%%  OutPuts       : 
%%    GSTime      - Greenwich Sidereal Time              0 to 2Pi rad 
%% 
%%  Locals        : 
%%    Temp        - Temporary variable for reals         rad 
%%    Tu          - Julian Centuries from 1 Jan 2000 
%% 
%%  Constants     : 
%%    TwoPi       - Defined in DFASMath package 
%%    RadPerDay   - Rads Earth rotates in 1 Solar Day 
%% 
%%  Coupling      : 
%%    revcheck      Simplified MOD function 
%% 
%%  References    : 
%%    1989 Astronomical Almanac pg. B6 
%%    Escobal       pg. 18 - 21 
%%    Explanatory Supplement pg. 73-75 
%%    Kaplan        pg. 330-332 
%%    BMW           pg. 103-104 
%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
%% Constants 
global RadPerDay TwoPI 
  
  
     Tu = ( fix(JD) + 0.5 - 2451545.0 ) / 36525.0; 
     %%Temp= 1.753368559 + 628.3319705*Tu + 6.770708127E-06*Tu*Tu + 
     Temp= 1.753368559 + 628.3319705*Tu + 6.770708127E-06*Tu^2 + RadPerDay*( (frac( JD ) 
- 0.5) ); 
  
%%%%%%%%%%%%%%%%%%%%%%- Check quadrants %%%%%%%%%%%%%%%%%%%%- 
     Temp= revcheck (Temp, TwoPI); 
%%     if Temp < 0.0  
%%         Temp= Temp + TwoPI; 
%%     end; 
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atmos76.m 
*Note: All of code not shown, missing tabulated densities at end 

 
function [RHO] = atmos76 ( R )  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%- 
%% 
%%  Use           : [RHO] = atmos76 ( R )  
%% 
%%  This function finds the atmospheric density at an altitude above an 
%%    oblate earth given the position vector in the Geocentric Equatorial 
%%    frame.  The position vector is in km's and the density is in kg/km**3. 
%%    The density is based on the 1976 Standard Atmoshpere Model. It is 
%%    computed using the data file and interpolation code obtained from  
%%    Aerospace Mission Analysis with MatLab by David Eagle 
%% 
%%  Algorithm     : Find initial values 
%%                  Loop to find the latitudes 
%%                  Calculate the density through table look-up 
%% 
%%  Author(ATMOS) : Capt Dave Vallado  USAFA/DFAS  719-472-4109  20 Sep 1990 
%%  In Ada        : Dr Ron Lisowski    USAFA/DFAS  719-472-4110  29 Jul 1997 
%%  In MatLab     : Dr Ron Lisowski    USAFA/DFAS  719-333-4109  14 Nov 2001 
%%  Use 1976 Data : Dr Ron Lisowski    USAFA/DFAS  719-333-4109  09 Dec 2003 
%% 
%%  Inputs        : 
%%    R           - GEC Position vector                    km 
%% 
%%  Outputs       : 
%%    RHO         - Density                                kg/km**3 
%% 
%%  Locals        : 
%%    Rc          - Range of site w.r.t. earth center      km 
%%    Height      - Height above earth w.r.t. site         km 
%%    Alt         - Altitude above earth w.r.t. site       km 
%%    OldDelta    - Previous value of DeltaLat             rad 
%%    DeltaLat    - Diff between Delta and Geocentric lat  rad 
%%    GeoDtLat    - Geodetic Latitude                     -Pi/2 to Pi/2 rad 
%%    GeoCnLat    - Geocentric Latitude                   -Pi/2 to Pi/2 rad 
%%    TwoFMinusF2 - 2*F - F squared 
%%    OneMinusF2  - ( 1 - F ) squared 
%%    Delta       - Declination angle of R in IJK system   rad 
%%    Temp        - Diff between Geocentric/Geodetic lat   rad 
%%    RSqrd       - Magnitude squared 
%%    SinTemp     - Sine of Temp 
%%    i           - index 
%% 
%%  Constants     : 
%%    Flat        - Flatenning of the Earth                0.003352810664747352 
%%    REarthKm    - Earth equatorial radius                6378.137 
%% 
%%  Coupling      : 
%%    Mag         - Vector Magnitude 
%% 
%%  References    : 
%%    Escobal       pg. 398-399 ( Conversion to Lat and Height ) 
%%    AMAM          pg. 237     (look-up 1976 Standard Atmosphere density) 
%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%- 
  
     global RE Flat HalfPI 
%%   CONSTANTS 
      Ae = RE; 
  
  
     %%%%%%%%%%%%%%%%%%%%%%  Initialize values   %%%%%%%%%%%%%%%%%%%%- 
     TwoFMinusF2= 2.0*Flat - Flat*Flat; 
     OneMinusF2 = ( 1.0-Flat )^2; 
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     %%%%%%%%%%%%%%%%- Set up initial latitude value  %%%%%%%%%%%%%%%% 
  
%%     Original Coding: 
%%     Dellta= ArcTan( R(3) / SQRT( R(1)*R(1) + R(2)*R(2) ) ); 
%%     IF ABS( Dellta ) > Pi THEN 
%%         Dellta= Dellta MOD Pi; 
%%     End if; 
  
%%    Modified Coding: Eliminates divide by zero RJL 10 Oct 95 %%%%%%- 
     Dellta = asin (R(3) / mag(R)); 
  
     GeoCnLat= Dellta; 
     OldDelta=  1.0; 
     DeltaLat= 10.0; 
     RSqrd  = mag(R)^2; 
  
     %%%%%%- Iterate to find Geocentric and Geodetic Latitude  %%%%%%- 
     iter= 1; 
     while ( abs( OldDelta - DeltaLat ) > 0.00001 ) && ( iter < 10 ) , 
         OldDelta= DeltaLat; 
         Rc     = Ae * sqrt( ( 1.0-TwoFMinusF2 ) / ... 
                          ( 1.0-TwoFMinusF2*cos(GeoCnLat)*cos(GeoCnLat) ) ); 
     %%%%%%- If statment added to deal with exact polar cases  %%%%%%%% 
     %%%%%%- RJL 29 Jul 97 %%%%%%%% 
         if abs (GeoCnLat-HalfPI) < 0.000001 , 
            GeoDtLat= GeoCnLat; 
         else 
            GeoDtLat= atan( tan(GeoCnLat) / OneMinusF2 ); 
         end  
         Temp   = GeoDtLat-GeoCnLat; 
         SinTemp= sin( Temp ); 
         Height = sqrt( RSqrd-Rc*Rc*SinTemp*SinTemp ) - Rc*cos(Temp); 
         DeltaLat= asin( Height*SinTemp / mag(R) ); 
         GeoCnLat= Dellta - DeltaLat; 
         iter = iter + 1; 
     end  %% While %% 
  
     if iter >= 10 , 
         disp( 'ATMOS76 latitude iteration did NOT converge ' ); 
     end 
  
  
     h= Height; 
  
     %%%%%%%%%%%% Determine density based on altitude %%%%%%%%%%%%%% 
     %%%%%%%%%%%%%%%  1976 Standard Atmosphere Data %%%%%%%%%%%%%% 
% Check to see if data is in global 
global ad76 
if length(ad76) < 1 
   atmos76dat; 
end  
  
% compute index and interpolation factor 
  
if h>1000 
  RHO = 0; 
  %disp ('ATMOS76 - alt exceeds 1000 km - density set to 0.0'); 
else 
  for i = 1:1:2001 
    xi = 0.5 * (i - 1); 
    xim1 = xi - 0.5; 
  
     if (h <= xi) 
       if (i == 1) 
          xinfac = 0; 
          index = 1; 
       else 
          xinfac = (h - xim1) / (xi - xim1); 
          index = i - 1; 
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       end 
       break; 
     end 
  end 
  
  y1 = ad76(index); 
  
  y2 = ad76(index + 1); 
  
% atmospheric value 
  
  RHO = y1 + xinfac * (y2 - y1); 
end 
  
% Local function to set up the data for ATMOS76 
  
function atmos76dat 
global ad76 
ad76 = [ ... 
.1225000E+10  ... 
.1167273E+10  ... 
.1111660E+10  ... 
.1058104E+10  ... 
.1006554E+10  ... 



 

 102

JulianDay.m 
 

function JD=julianday(Yr,Mon,D,H,M,S) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%- 
%% 
%%  Use           : JD=julianday(Yr,Mon,D,H,M,S) 
%% 
%%  This function finds the Julian date given the Year, Month, Day, and Time. 
%%    The Julian date is defined by each elapsed day since noon, 1 Jan 4713 BC. 
%%    Julian dates are measured from this epoch at noon so astronomers 
%%    observations may be performed on a single "day".  The year range is 
%%    limited since machine routines for 365 days a year and leap years are 
%%    valid in this range only.  This is due to the fact that leap years occur 
%%    only in years divisible by 4 and centuries whose number is evenly 
%%    divisible by 400. ( 1900 no, 2000 yes ... ) 
%% 
%%  NOTE:  This Algorithm is taken from the 1988 Almanac for Computers, 
%%    Published by the U.S. Naval Observatory.  The algorithm is good for dates 
%%    between 1 Mar 1900 to 28 Feb 2100 since the last two terms (from the 
%%    Almanac) are commented out.  Including the last two terms enables 
%%    calculations between 1 Mar 1801, and 2100. 
%% 
%%  Algorithm     : Find the various terms of the expansion 
%%                  Calculate the answer 
%% 
%%  Author        : Capt Dave Vallado     USAFA/DFAS  719-472-4109  12 Aug 1988 
%%  In Ada        : Dr Ron Lisowski       USAFA/DFAS  719-472-4110  17 May 1995 
%%  In MatLab     : LtCol Thomas L. Yoder USAFA/DFAS  719-333-4110  Spring 00 
%% 
%%  Inputs        : 
%%    Yr          - Year                                1900 .. 2100 
%%    Mon         - Month                                  1 .. 12 
%%    D           - Day                                    1 .. 28,29,30,31 
%%    H           - Universal Time Hour                    0 .. 23 
%%    M           - Universal Time Min                     0 .. 59 
%%    Sec         - Universal Time Sec                   0.0 .. 59.999 
%% 
%%  Outputs       : 
%%    JD          - Julian Date                          days from 4713 B.C. 
%% 
%%  Locals        : 
%%    Term1       - Temporary Long_Float value 
%%    Term2       - Temporary 32 bit INTEGER value 
%%    Term3       - Temporary 32 bit INTEGER value 
%%    UT          - Universal Time                           days 
%% 
%%  Constants     : None. 
%% 
%%  Coupling      : None. 
%% 
%%  References    : 
%%    1988 Almanac for Computers  pg. B2 
%%    Escobal       pg. 17-19 
%%    Kaplan        pg. 329-330 
%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
TERM1= 367.0 * Yr; 
TERM2= fix( ( 7.0 * (Yr + fix((Mon+9.0)/12.0))) * 0.25); 
TERM3= fix(275.0 * Mon / 9.0 ); 
UT= ( (S/60.0 + M ) / 60.0 + H ) / 24.0; 
  
JD= (TERM1-TERM2+TERM3) + D + UT + 1721013.5; 
%%   The following neglected term must be added for dates before 28 Feb 1900      
%%      + 0.5*sign( (100*Yr + Mon) - 190002.5) + 0.5; 
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revcheck.m 
 

function y = revcheck (x, modby) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% 
%%  Use          : y = revcheck (x, modby) 
%% 
%%    Accomplishes a modulus function of x by modby. While this does exactly 
%%    the same operation as the MatLab mod function, it does it quicker   
%%    because the overhead is minimal. This has shown to be significant when 
%%    propagating COEs at small time steps over large time spans. 
%% 
%%  inputs: 
%%           x -  argument (radians, degrees, etc.) 
%%       modby -  value to mod by (TwoPi, 360, etc.) 
%% 
%%  outputs: 
%%           y -  x modulus modby 
%% 
%%  Author        : Capt Dave Vallado  USAFA/DFAS  719-472-4109   12 Aug 1988 
%%  In Ada        : Dr Ron Lisowski    USAFA/DFAS  719-472-4110    2 Jul 1997 
%%  In MatLab     : LtCol Thomas Yoder USAFA/DFAS  719-333-4110   Spring 2001 
%% 
%%  Locals:  None. 
%% 
%%  Constants:  None. 
%% 
%%  Coupling:  None. 
%%  References:  None. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
y = x - modby * fix(x / modby); 
  
if (y ~= 0 && sign(y) ~= sign(modby)) 
   y = y + modby; 
end 
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RVpqw.m 
 

function [rpqw,vpqw]=RVpqw(a,ecc,nu) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% Use: [rpqw,vpqw]=RVpqw(a,ecc,nu) 
% 
% The function RVpqw computes R and V in the pqw frame 
% 
% Author: Scott Dahlke  USAFA/DFAS  719-333-4110 
% 
% Inputs: 
%   a - semimajor axis (km) 
%   ecc - eccentricity 
%   nu - true anomaly (rad)  
% 
% Outputs: 
%   rpqw - position in the pqw frame 
%   vpqw - velocity in the pqw frame 
% 
% Globals: MU 
% 
% Constants: None 
% 
% Coupling: None 
%  
% References: 
%   COE's to RV Lesson of Astro 201 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
global MU 
  
% compute the parameter p 
p = a*(1-ecc^2); 
  
% compute the position vector 
rpqw = p/(1 + ecc*cos(nu))*[cos(nu);sin(nu);0]; 
  
% compute the velocity vector 
vpqw = sqrt(MU/p)*[-sin(nu);(ecc+cos(nu));0]; 
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RVijk.m 
 

function [rijk,vijk]=RVijk(rpqw,vpqw,incl,raan,argp) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% Use: [rijk,vijk]=RVijk(rpqw,vpqw,incl,raan,argp) 
% 
% The function RVijk rotates R and V in the pqw frame to  
% the ijk frame 
% 
% Author: Scott Dahlke  USAFA/DFAS  719-333-4110 
% 
% Inputs: 
%   rpqw - position in the pqw frame 
%   vpqw - velocity in the pqw frame% 
%   incl - inclination (rad) 
%   raan - right ascension of the ascending node (rad) 
%   argp - argument of perigee (rad) 
% 
% Outputs: 
%   rijk - position in the pqw frame 
%   vijk - velocity in the pqw frame 
% 
% Globals: MU 
% 
% Constants: None 
% 
% Coupling: axisrot 
%  
% References: 
%   COE's to RV Lesson of Astro 201 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
global MU 
  
% rotate the position vector 
rtemp1 = axisrot(rpqw,3,-argp); 
rtemp2 = axisrot(rtemp1,1,-incl); 
rijk   = axisrot(rtemp2,3,-raan); 
  
% rotate the velocity vector 
vtemp1 = axisrot(vpqw,3,-argp); 
vtemp2 = axisrot(vtemp1,1,-incl); 
vijk   = axisrot(vtemp2,3,-raan); 
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axisrot.m 
 

function B=axisrot(A,axis,alpha) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% 
%%  Use           : B=axisrot(A,axis,alpha) 
%% 
%% This function performs a rotation of angle ALPHA about a desired axis. 
%% 
%%   Author       : Dr. RON LISOWSKI, DFAS,      5 Jan 95 
%%   In MatLab    : Thomas L. Yoder, LtC, USAFA, Spring 00 
%% 
%%   Input        : 
%%     A          % Input vector                            Vector of dimension three 
%%     axis       % desired axis for rotation:              1, 2 or 3 
%%     alpha      % Angle of rotation                       radians 
%% 
%%   Output       : 
%%     B          % Rotated Vector                          Vector of dimension three 
%% 
%%   Locals       : None. 
%% 
%%   Coupling     : 
%%     mag        % Finds the magnitude of a vector 
%% 
%%   References   : 
%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
switch axis 
case 1    
   %rotate about the 1st axis 
   B(1)=A(1); 
   B(2)=A(2)*cos(alpha)+A(3)*sin(alpha); 
   B(3)=-A(2)*sin(alpha)+A(3)*cos(alpha); 
case 2 
   % rotate about the 2nd axis 
   B(1)=A(1)*cos(alpha)-A(3)*sin(alpha); 
   B(2)=A(2); 
   B(3)=A(1)*sin(alpha)+A(3)*cos(alpha); 
case 3 
   % rotate about the 3rd axis 
   B(1)=A(1)*cos(alpha)+A(2)*sin(alpha); 
   B(2)=-A(1)*sin(alpha)+A(2)*cos(alpha); 
   B(3)=A(3); 
otherwise 
   disp('AxisRot axis number not 1, 2 or 3') 
   B = A; 
end 
   % Ensure B is a column vector 
   B = B(:); 
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mag.m 
function B=mag(A) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%                                                                      
%%  Use           : B=mag(A) 
%%                                                                      
%%   Author       : Dr. RON LISOWSKI, DFAS,      5 Jan 95 
%%   In MatLab    : Thomas L. Yoder, LtC, USAFA, Spring 00 
%%                                                                      
%% Overview: This function Calculates the Magnitude of a Vector 
%%           Using this function in lieu of the general norm function 
%%            may speed execution time in large data processing tasks 
%% 
%% 
%%   Input        : 
%%      A         - Input Vector    
%% 
%%   Output       : 
%%      B         - Output magnitude float 
%%                                                                      
%%                                                                      
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
[M,N]=size(A); 
if M>N  % for column vector 
   B=sqrt(A(1,1)^2+A(2,1)^2+A(3,1)^2); 
else    % for row vector 
   B=sqrt(A(1,1)^2+A(1,2)^2+A(1,3)^2); 
end 
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Appendix C: Gaussian Variation of Parameters Graphs 

(Note: Original files can be found at L:\Research\Responsive Orbits\VOP Graphs  ) 

 
Change in Semi-major Axis Due to 

Changing Eccentricity and 6800 Semi-
major Axis, S-direction 

 

 
Change in Semi-major Axis Due to 

Changing Eccentricity and 7000 Semi-
major Axis, S-direction 

 

 
Change in Semi-major Axis Due to 
Changing Eccentricity and 10000 

Semi-major Axis, S-direction 

 
Change in Semi-major Axis Due to 
Changing Semi-major Axis and 0.1 

Eccentricity, S-direction 
 

 
Change in Semi-major Axis Due to 

Changing Semi-major Axis and 0.01 
Eccentricity, S-direction 

 

 
Change in Semi-major Axis Due to 

Changing Semi-major Axis and 0.001 
Eccentricity, S-direction 
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Change in Semi-major Axis Due to 

Changing Eccentricity and 6800 Semi-
major Axis, R-direction 

 

 
Change in Semi-major Axis Due to 

Changing Eccentricity and 7000 Semi-
major Axis, R-direction 

 

 
Change in Semi-major Axis Due to 
Changing Eccentricity and 10000 

Semi-major Axis, R-direction 
 

 
 
 

 
Change in Semi-major Axis Due to 
Changing Semi-major Axis and 0.1 

Eccentricity, R-direction 
 

 
Change in Semi-major Axis Due to 

Changing Semi-major Axis and 0.01 
Eccentricity, R-direction 

 

 
Change in Semi-major Axis Due to 

Changing Semi-major Axis and 0.001 
Eccentricity, R-direction 
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Change in Eccentricity Due to 

Changing Eccentricity and 6800 Semi-
major Axis, S-direction 

 

 
Change in Eccentricity Due to 

Changing Eccentricity and 7000 Semi-
major Axis, S-direction 

 

 
Change in Eccentricity Due to 

Changing Eccentricity and 10000 
Semi-major Axis, S-direction 

 

 
 
 

 
Change in Eccentricity Due to 

Changing Semi-major Axis and 0.1 
Eccentricity, S-direction 
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